Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. kết quả = 401/402
b. Ta có: 1-2004/2009=5/2009 , 1--2005/2010=5/2010 . Vì 5/2009 > 5/2010 nên 2004/2009 < 2005/2010.
Đấy phần b. mk ko quy đồng nha!
Nhớ Tích cho mk đấy
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>\frac{2001}{2001}+\frac{2002}{2002}+\frac{2003}{2003}+\frac{2004}{2004}+\frac{2005}{2005}+\frac{2006}{2006}+\frac{2007}{2007}+\frac{2008}{2008}\)
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>1+1+1+1+1+1+1+1\)\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)
\(A>8\)
Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 ). Để so sánh hai phân số, ta so sánh các hiệu:
1 - 2004/2005 và 1 - 2005/2006 ; 1 - 2006/2007 và 1 - 2007/2008
Ta có:
1 - 2004/2005 = 2005/2005 - 2004/2005 = 1/2005
1 - 2005/2006 = 2006/2006 - 2005/2006 = 1/2006
1 - 2006/2007 = 2007/2007 - 2006/2007 = 1/2007
1 - 2007/2008 = 2008/2008 - 2007/2008 = 1/2008
Phân số có cùng tử số, phân số nào có mẫu số càng lớn thì phân số đó càng bé.
Do đó:
1/2005 >1/2006 > 1/2007 > 1/2008
Hay:
1- 2004/2005 > 1 - 2005/2006 > 1 - 2006/2007 > 1 - 2007/2008
Nên:
2004/2005 < 2005/2006 < 2006/2007 < 2007/2008
Vậy phân số 2004/2005 là phân số bé nhất.
bố thí mấy đi
Ta thấy:
2005/2006 = 1 - 1/2006
2006/2007 = 1 - 1/2007
2007/2008 = 1 - 1/2008
2008/2005 = 1 + 3/2005
Mà: 1/2005 > 1/2006 > 1/2007 > 1/2008
=> 3/2005 - 1/2006 - 1/2007 - 1/2008 > 0
=> 2005/2006 + 2006/2007 + 2007/2008 + 2008/2005 > 4
Ta có:
2006/2007 + 2007/2008 + 2008/2009 + 2009/2006
= 1 - 1/2007 + 1 - 1/2008 + 1 - 1/2009 + 1 + 3/2006
= (1 + 1 + 1 + 1) - (1/2007 + 1/2008 + 1/2009) + 3/2006
= 4 - (1/2007 + 1/2008 + 1/2009) + 3/2006
Vì 1/2007 < 1/2006
1/2008 < 1/2006
1/2009 < 1/2006
=> 1/2007 + 1/2008 + 1/2009 < 3/2006
=> -(1/2007 + 1/2008 + 1/2009) + 3/2006 > 0
=> 4 - (1/2007 + 1/2008 + 1/2009) + 3/2006 > 4 - 0 = 4
=> 2006/2007 + 2007/2008 + 2008/2009 + 2009/2006 > 4
Ta có:
2006/2007 + 2007/2008 + 2008/2009 + 2009/2006
= 1 - 1/2007 + 1 - 1/2008 + 1 - 1/2009 + 1 + 3/2006
= (1 + 1 + 1 + 1) - (1/2007 + 1/2008 + 1/2009) + 3/2006
= 4 - (1/2007 + 1/2008 + 1/2009) + 3/2006
Vì 1/2007 < 1/2006
1/2008 < 1/2006
1/2009 < 1/2006
=> 1/2007 + 1/2008 + 1/2009 < 3/2006
=> -(1/2007 + 1/2008 + 1/2009) + 3/2006 > 0
=> 4 - (1/2007 + 1/2008 + 1/2009) + 3/2006 > 4 - 0 = 4
=> 2006/2007 + 2007/2008 + 2008/2009 + 2009/2006 > 4
`2007/2009×2002/2005×2009/2006×2005/2007×2006/2002`
`=(2007xx2002xx2009xx2005xx2006)/(2009xx2005xx2006xx2007xx2002)`
`=(2007xx2002xx2009xx2005xx2006)/(2007xx2002xx2009xx2005xx2006)`
`=1`
\(\dfrac{2007}{2009}.\dfrac{2002}{2005}.\dfrac{2009}{2006}.\dfrac{2005}{2007}.\dfrac{2006}{2002}\\ =\left(\dfrac{2007}{2009}.\dfrac{2009}{2006}\right).\left(\dfrac{2006}{2002}.\dfrac{2002}{2005}\right).\dfrac{2005}{2007}\\ =\dfrac{2007}{2006}.\dfrac{2006}{2005}.\dfrac{2005}{2007}=1\)