K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

Ta có: \(x=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\Rightarrow x^2=\frac{1}{16}-\frac{1}{8}\sqrt{2}\sqrt{\sqrt{2+\frac{1}{8}}}+\frac{1}{4}\sqrt{2}\)

\(=\frac{1}{4}\left(\frac{1}{4}-\frac{\sqrt{2}}{2}\sqrt{\sqrt{2+\frac{1}{8}}}+\sqrt{2}\right)=\frac{-x\sqrt{2}+\sqrt{2}}{4}\Rightarrow x^4=\frac{x^2-2x+1}{8}\)

Và \(x^4+x+1=\frac{\left(x+3\right)^2}{8}\)

Thay vào A ta có A=\(\sqrt{2}\)

20 tháng 8 2015

Từ giả thiết ta suy ra  \(2x=\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{4}\). Bình phương hai vế cho ta

\(4x^2=\sqrt{2}+\frac{1}{8}-\frac{\sqrt{2}}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{8}=\sqrt{2}+\frac{1}{4}-\frac{\sqrt{2}}{2}\sqrt{\sqrt{2}+\frac{1}{8}}=\sqrt{2}\left(1-x\right).\)

Từ đây ta được \(4x^2=\sqrt{2}\left(1-x\right)\to2\sqrt{2}x^2+x-1=0\to x=-2\sqrt{2}x^2+1.\)

Suy ra \(x^4+x+1=x^4-2\sqrt{2}x^2+2=\left(x^2-\sqrt{2}\right)^2.\) Do vậy ta thu được

\(A=x^2+\sqrt{\left(x^2-\sqrt{2}\right)^2}=x^2+\left|x^2-\sqrt{2}\right|.\)

Mặt khác từ giả thiết suy ra \(0 Do đó A=căn 2. 

 

19 tháng 7 2016

Ta có : \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{1}{8}\sqrt{2}\Leftrightarrow8a=4\sqrt{\sqrt{2}+\frac{1}{8}}-\sqrt{2}\Leftrightarrow8a+\sqrt{2}=4\sqrt{\sqrt{2}+\frac{1}{8}}\)

\(\Leftrightarrow\left(8a+\sqrt{2}\right)^2=16\left(\sqrt{2}+\frac{1}{8}\right)\)  \(\Leftrightarrow64a^2+16\sqrt{2}a+2=16\left(\sqrt{2}+\frac{1}{8}\right)\Leftrightarrow64a^2+16\sqrt{2}a+2=16\sqrt{2}+2\)

\(\Leftrightarrow4a^2+\sqrt{2}a=\sqrt{2}\Leftrightarrow4a^2=\sqrt{2}-\sqrt{2}a\)

Đặt \(Y=\sqrt{a^4+a+1}-a^2\) \(\Rightarrow XY=a+1\Leftrightarrow X.\left(-Y\right)=-\left(a+1\right)\) (1)

\(X+\left(-Y\right)=2a^2=\frac{\sqrt{2}-\sqrt{2}a}{2}=\frac{1-a}{\sqrt{2}}\) (2)

Từ (1) và (2) suy ra X và Y là hai nghiệm của phương trình \(t^2+\frac{1-a}{\sqrt{2}}.t-\left(a+1\right)=0\)

Giải phương trình trên được \(t_1=-\sqrt{2}\)  ; \(t_2=-\frac{x+1}{\sqrt{2}}\) 

Suy ra : \(X=\sqrt{2}\) (vì X > 0)

19 tháng 7 2016

nhân vế vs vế của 1 vs 2 à pn. nhưng t^2 ở đâu ra vậy

bucminh

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với