Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A.√2= √(4+2√3)-√(4-2√3)
= √(1+√3)2 -√( √3 -1)2
= 1+√3-√3+1= 2
=> A= 2/√2=√2
B2= (4+√15)2.(4-√15).(√10-√6)2
= (4+√15).1.(16-4√15)
= (4+√15).(4-√15).4
= 4
=> B = √4 = 2
\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(A=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(A=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\)
\(B=\sqrt{6-2\sqrt{5}}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
\(B=\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
\(B=\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)\)
\(B=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)=2\)
G = \(\sqrt{6}-2+5-\sqrt{6}+2^3=3+8=11\)
F= \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2^5\right)^2}\)=\(2+\sqrt{3}-\sqrt{3}+1+2^5=3+32=35\)
H = \(\sqrt{6}-\frac{4\left(\sqrt{10}+\sqrt{6}\right)}{10-6}+\frac{\sqrt{10}\left(\sqrt{10}-1\right)}{\sqrt{10}-1}\)=\(\sqrt{6}-\sqrt{10}-\sqrt{6}+\sqrt{10}=0;\)
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
= \(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(2-\sqrt{3}+\sqrt{3}-1\) = \(1\)
b) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(3-\sqrt{6}+2\sqrt{6}-3\) = \(\sqrt{6}\)
c) \(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\)
= \(\dfrac{15\sqrt{200}}{\sqrt{10}}-\dfrac{3\sqrt{450}}{\sqrt{10}}+\dfrac{2\sqrt{50}}{\sqrt{10}}\)
= \(15\sqrt{20}-3\sqrt{45}+2\sqrt{5}\)
= \(30\sqrt{5}-9\sqrt{5}+2\sqrt{5}\) = \(23\sqrt{5}\)
Phần a sai đề sửa đề
\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-{12\sqrt{5}}}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(2\sqrt{5}-3)^2 } } } \)
=\(\sqrt{5-\sqrt{3-2\sqrt{5}+3 }}\)
=\(\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2 } } \)
=\(\sqrt{\sqrt{5}-\sqrt{5}+1 } \)
=1
B=\((\sqrt{4+\sqrt{15} }) \sqrt{2}(\sqrt{5}-\sqrt{3})(\sqrt{4-\sqrt{15} })({\sqrt{4+\sqrt{15} }) } \)
=(\((\sqrt{4+\sqrt{15} })\sqrt{2}(\sqrt{5}-\sqrt{3}) \)
=\((\sqrt{8+2\sqrt{15} })(\sqrt{5}-\sqrt{3}) \)
=\((\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3}) \)
=2
Lời giải:
a)
\(\frac{4}{\sqrt{10}}(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})=\frac{4}{\sqrt{20}}(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}})\)
\(=\frac{4}{2\sqrt{5}}(\sqrt{5+1+2\sqrt{5}}+\sqrt{5+1-2\sqrt{5}})=\frac{2}{\sqrt{5}}[\sqrt{(\sqrt{5}+1)^2}+\sqrt{(\sqrt{5}-1)^2}]\)
\(=\frac{2}{\sqrt{5}}(\sqrt{5}+1+\sqrt{5}-1)=\frac{2}{\sqrt{5}}.2\sqrt{5}=4\)
b)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{3+5-2\sqrt{3.5}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})\)
\(=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)
c)
\(=\sqrt{4\sqrt{2}(\sqrt{3}+1)+8\sqrt{3}+18}=\sqrt{4\sqrt{2}(\sqrt{3}+1)+4(3+1+2\sqrt{3})+2}\)
\(=\sqrt{4\sqrt{2}(\sqrt{3}+1)+4(\sqrt{3}+1)^2+2}\)
\(=\sqrt{(2\sqrt{3}+2)^2+(\sqrt{2})^2+2.(2\sqrt{3}+2).\sqrt{2}}\)
\(=\sqrt{(2\sqrt{3}+2+\sqrt{2})^2}=2\sqrt{3}+2+\sqrt{2}\)
a) A=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)(đpcm)
b) B=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
=\(\left(4\sqrt{10}+\sqrt{150}-4\sqrt{6}-\sqrt{90}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
=\(\left(4\sqrt{10}+5\sqrt{6}-4\sqrt{6}-3\sqrt{10}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
=\(\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
=\(5-\sqrt{15}+\sqrt{15}-3=2\)(đpcm)
\(B=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\\ B=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\\ B=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\\ B=2\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\sqrt{4+\sqrt{15}}.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{16-15}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}.\sqrt{5}+\left(\sqrt{5}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)=\left|\sqrt{5}+\sqrt{3}\right|\left(\sqrt{5}-\sqrt{3}\right)=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)