Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này có thể sử dụng máy tính cầm tay tính. Nhập biểu thức đó vào xong rồi ấn nút CALC ở góc trên bên trái dưới SHIFT rồi nhập 2005 vào rồi ấn bằng là ra nha!
=x4-2006(x3+x2-x+1)
thay vào: 20054-2006(20053+20052-2005+1)
sau đó tính ra nha
a)
\(=x^2-\left(1-2y+y^2\right)\)
\(=x^2-\left(1-y\right)^2\)
\(=\left(x-1+y\right)\left(x+1-y\right)\)
thay x=0,75 , y=1,25 vào biểu thức
\(=\left(0,75-1+1,25\right)\left(0,75+1-1,25\right)\)
\(=1\cdot\frac{1}{2}=\frac{1}{2}\)
A = x5 - 5x4 + 5x3 - 5x2 + 5x -1
A = x5 - ( 4 + 1 ) x4 + ( 4 + 1 ) x3 - ( 4 + 1 ) x2 + ( 4 + 1 )x - 1
Thay 4= x vào biểu thức A , ta đc :
A= x5 - ( x + 1 ) x4 + ( x + 1 ) x3 - ( x + 1 ) x2 + ( x + 1 )x - 1
A= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x -1
A= x - 1
Thay x = 4 vào biểu thức A, ta đc
A= 4 - 1
A= 4
b, B= x2006 - 8x2005 + 8x2004 - .... + 8x2 - 8x -5
B= x2006 - ( 7 + 1 ) x2005 + ( 7 + 1 ) x2004 - .......+ ( 7 + 1 ) x2 - ( 7 + 1 ) x - 5
Thay 7 = x vào biểu thức B ta đc
B= x2006 - ( x + 1 ) x2005 + ( x + 1 )x2004 - ......+ ( x + 1 ) x2 + ( x + 1 )x - 5
B = x2006 - x2006 - x2005 + x2005 + x2004 - .....+ x3 - x2 + x2 + x - 5
B= x - 5
Thay x = 7 vào biểu thức B, ta đc:
B = 7 - 5
B = 2
( PCY ❤ )
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
\(.\)M= bn ghi lại đề nha ^.^
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)
k cho mình nha bn thanks nhìu <3 <3 (^3^)
2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)
Đặt \(x^2+5x+4=t\)
(1) = \(t.\left(t+2\right)-24\)
\(=t^2+2t+1-25\)
\(=\left(t+1\right)^2-25\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)(2)
Thay \(t=x^2+5x+4\)vào (2) ta có:
(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
k mình nha bn <3 thanks
Câu hỏi của Lãnh Hàn Thần - Toán lớp 8 - Học toán với OnlineMath
\(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2.\left(xy+yz+xz\right)=0\)
\(\Rightarrow1+2.\left(xy+yz+xz\right)=0\)
\(\Rightarrow xy+yz+xz=\frac{-1}{2}\)
\(\Rightarrow\left(xy+yz+xz\right)^2=\frac{1}{4}\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2.\left(xy^2z+xyz^2+x^2yz\right)=\frac{1}{4}\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2=\frac{1}{4}\)
\(x^2+y^2+z^2=1\)
\(\Rightarrow\left(x^2+y^2+z^2\right)^2=1\)
\(\Rightarrow x^4+y^4+z^4+2.\left(x^2y^2+y^2z^2+x^2z^2\right)=1\)
\(\Rightarrow x^4+y^4+z^4+2.\frac{1}{4}=1\)
\(\Rightarrow x^4+y^4+z^4=\frac{1}{2}\)
\(\Rightarrow S=\frac{1}{2}\)