K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

E = \(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=\frac{2^2.2.5^2.5.7^4}{2^2.5^2.7^4}=2.5=10\)

17 tháng 5 2016

\(E=\frac{2^3.5.7.5^2.7^3}{2^2.5^2.7^4}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=2.5=10\)

1 tháng 5 2015

\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}=\frac{2.2.2.5.7.5.5.7.7.7}{2.5.7.7.2.5.7.7}=\frac{2.5}{1}=10\)

Ko biết có đúng ko

1 tháng 5 2015

\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}=\frac{2^3.\left(5.5^2\right).\left(7.7^3\right)}{2^2.5^2.7^{2^2}}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=2.5=10\)

8 tháng 5 2018

Đặt A=\(\dfrac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)

A=\(\dfrac{2^3.5.7.5^2.7^3}{2^2.5^2.7^4}\)

A=\(\dfrac{2^3.5^3.7^4}{2^2.5^2.7^4}\)

A=2.\(5^2\)

A=2.25

A=50

3 tháng 5 2018

a) \(A=\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+...+\frac{1}{25\cdot27\cdot29}\)

   \(\Rightarrow4A=\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+...+\frac{4}{25\cdot27\cdot29}\)

\(\Rightarrow4A=\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5\cdot7}+...+\frac{1}{25\cdot27}-\frac{1}{27\cdot29}\)

\(\Rightarrow4A=\frac{1}{1\cdot3}-\frac{1}{27\cdot29}=\frac{1}{3}-\frac{1}{783}=\frac{261}{783}-\frac{1}{783}=\frac{260}{783}\)

\(\Rightarrow A=\frac{\frac{260}{783}}{4}=\frac{65}{783}\)

b) \(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)

\(\Rightarrow100\cdot\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)x=100\cdot\left(\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\right)\)

\(\Rightarrow\left(\frac{100}{1\cdot101}+\frac{100}{2\cdot102}+...+\frac{100}{10\cdot110}\right)x=10\cdot\left(\frac{10}{1\cdot11}+\frac{10}{2\cdot12}+...+\frac{10}{100\cdot110}\right)\)

\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=10\cdot\left(1-\frac{1}{10}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)

\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=10\cdot\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)\)

\(\Rightarrow x=10\cdot\)

22 tháng 4 2019

đụ cha mi

mi trù ta thi rớt HK II mà ta giúp mày hả

mấy bài này cũng dễ ẹt nữa

đừng có mơ ta sẽ giúp mày

ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
 

3 tháng 5 2019

\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)

\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)

\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)

\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)

\(B=\frac{100\cdot2}{1\cdot101}\)

\(B=\frac{200}{101}\)

11 tháng 5 2017

Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)\(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
\(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)\(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
\(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
\(\frac{7}{22}\)

Bài 2: 

a: \(=44\cdot82-400+18\cdot44\)

\(=44\cdot100-400=4400-400=4000\)

b: \(=6^2:\left\{780:\left[390-125\cdot49+65\right]\right\}\)

\(=36:\left\{780:\left[-5670\right]\right\}\)

\(=36:\dfrac{-26}{189}=\dfrac{-3402}{13}\)

1 tháng 4 2018

  Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1) 
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1) 
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1) 
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1) 
Vậy A = n/(2n + 1)

hình như sai!!

27 tháng 3 2018

= (-2)^3. 3= -24

27 tháng 3 2018

\(\frac{\left(-2\right)^3.3^3.5^3.7.8}{3.5^3.2^4.42}\)

\(=\frac{\left(-2\right)^3.3^3.5^3.7.2^3}{3.5^3.2^4.2.3.7}=\frac{\left(-2\right)^3.3^3.5^3.7.2^3}{3^2.5^3.2^5.7}=\frac{-2.3}{1}=-6\)

học tốt~~~