Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì \(x=4; y=8\Rightarrow x^2=16; 2y=16\Rightarrow x^2=2y\Rightarrow x^2-2y=0\).
Do đó:
\(A=(x^2-2y).\frac{x^2(x^2+2y)(x^4+2y^4)(x^8+2y^8)}{x^{16}+2y^{16}}\)
\(=0.\frac{x^2(x^2+2y)(x^4+2y^4)(x^8+2y^8)}{x^{16}+2y^{16}}=0\)
\(P=\)\(\left(xy\right)+\left(xy\right)^2-\left(xy\right)^4+\left(xy\right)^6-\left(xy\right)^8\)
Ta có: \(xy=\left(-1\right).\left(-1\right)=1\)
Thay \(xy=1\)vào \(P\) ta có:
\(1+1^2-1^4+1^6-1^8\)\(=\)\(1+1-1+1-1\)\(=\)\(1\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
có \(x^2-2y=4^2-2\cdot8=16-16=\)0
do đó C=0