Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left(x-1\right)\left(x^2+x+1\right)-\left(x-2\right)\left(x^2+2x+4\right)+2\left(x^2-4x+4\right)\)
\(=x^3-x^2+x^2-x+x-1-x^3+2x^2-2x^2+4x-4x+8+2x^2-8x+8\)
\(=2x^2-8x+15\)
Thay x= 102 vào E, ta được:
\(2\cdot102^2-8\cdot102+15=2\cdot102\left(102-4\right)+15=204\cdot98+15=19992+15=20007\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
A = (2x - 3)(x2 + 4x) - 2(x3 + 2x + 6)
= 2x(x2 + 4x) - 3(x2 + 4x) - 2x3 - 4x - 12
= 2x3 + 8x2 - 3x2 - 12x - 2x3 - 4x - 12
= 5x2 - 16x - 12
Thay x = 4 vào biểu thức trên ta có : 5.42 - 16.4 - 12 = 4
B = x(x2 + 7x) - (x + 9)(x2 + 17)
= x3 + 7x2 - x(x2 + 17) - 9(x2 + 17)
= x3 + 7x2 - x3 - 17x - 9x2 - 153
= -2x2 - 17x - 153
Thay x = 5 vào biểu thức trên ta có : -2.52 - 17.5 - 153 = -50 - 85 - 153 = -288
A = ( 2x - 3 )( x2 + 4x ) - 2( x3 + 2x + 6 )
A = 2x3 + 8x2 - 3x2 - 12x - 2x3 - 4x - 12
A = 5x2 - 16x - 12
Thế A = 4 ta được :
A = 5.42 - 16.4 - 12 = 4
B = x( x2 + 7x ) - ( x + 9 )( x2 + 17 )
B = x3 + 7x2 - ( x3 + 17x + 9x2 + 153 )
B = x3 + 7x2 - x3 - 17x - 9x2 - 153
B = -2x2 - 17x - 153
Thế x = 5 ta được :
B = -2.52 - 17.5 - 153 = -288
\(E=\left(x-1\right)\left(x^2+x+1\right)-\left(x-2\right)\left(x^2+2x+4\right)+2\left(x^2-4x+4\right)\)
\(=x^3-1-\left(x^3-2^3\right)+2\left(x^2-2.x.2+2^2\right)\)
\(=x^3-1-x^3+8+2\left(x-2\right)^2=102^3-1-102^3+8+2\left(102-2\right)^2=20007\)