Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(3.2\right)^8.2^2.5}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+3^8.2^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+3^8.2^{10}.5}\)
\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)
b) đặt A=2100 - 299 + 298 - 297 +...+ 22 - 2
=>2A=2101-2100+299-298+...+23-22
=>2A+A=2101-2100+299-298+...+23-22+2100 - 299 + 298 - 297 +...+ 22 - 2
=>3A=2101-2
=>A=\(\frac{2^{101}-2}{3}\)
Áp dụng công thức: (n-2)n(n+2) = n3 - 4n => n3 = (n-2).n.(n+2) + 4n
b18) Áp dụng: ta có: 23 = 4.2; 43 = 2.4.6 + 4.4 ; 63 = 4.6.8 + 4.6; ...; 1003 = 98.100.102 + 4.100
=> A = 4.2 + 2.4.6 + 4.4 + 4.6.8 + 4.6 +...+ 98.100.102 + 4.100
= (2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 ) + 4.(2 + 4 + 6 + ...+ 100) = B + 4.C
Tính B = 2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102
=> 8.B = 2.4.6.8 + 4.6.8.8 + 6.8.10.8 +...+ 98.100.102.8
= 2.4.6.8 + 4.6.8 (10 - 2) + 6.8.10.(12 - 4) +...+ 98.100.102.(104 - 96)
= 2.4.6.8 + 4.6.8.10 - 2.4.6.8 + 6.8.10.12 - 4.6.8.10 +...+ 98.100.102.104 - 96.98.100.102
= (2.4.6.8 + 4.6.8.10 + 6.8.10.12 +...+ 98.100.102.104) - (2.4.6.8 + 4.6.8.10 +...+ 96.98.100.102)
= 98.100.102.104
=> B =98.100.102.104 : 8 = 12 994 800
C = 2+ 4+ 6 +..+100 = (2+100) . 50 : 2 = 2550
Vậy A = B +4C = 12 994 800 + 4. 2550 = 13 005 000
a, \(A=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
\(\Rightarrow3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
\(\Rightarrow4A=3^{101}+1\)
\(\Rightarrow A=\dfrac{3^{101}+1}{4}\)
Vậy...
b, tương tự
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
A = 2100- 299 + 298 - 297 + ... + 22 - 2
=> 2A = 2101 - 2100 + 299 - 298 + ... + 23 - 22
Khi đó 2A + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)
=> 3A = 2101 - 2
=> \(A=\frac{2^{201}-2}{3}\)
b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1
=> 3B = 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
Khi đó 3B + B = (3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)
=> 4B = 3101 + 1
=> B = \(\frac{3^{101}+1}{4}\)
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)
<=> \(3A=2^{101}-2\)
=> \(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)
<=> \(4A=3^{101}+1\)
=> \(A=\frac{3^{101}+1}{4}\)
Ta đăt:A = \(\frac{1}{3}+\left(\frac{1}{3}^2\right)+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^7\)
\(\Rightarrow3A=1+\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^8\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^8\right)-\left(\frac{1}{3}+\left(\frac{1}{3}^2\right)+....+\left(\frac{1}{3}\right)^7\right)\)
\(\Rightarrow2A=1-\left(\frac{1}{3}\right)^7\)
\(\Rightarrow A=\frac{1-\left(\frac{1}{3}\right)^7}{2}\)
45 : 5 = 9
Sr bạn nha mình nhầm=)))