Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\left(\frac{9}{10}+\frac{1}{10}\div\frac{4}{5}\right)\times\left(\frac{3}{15}-\frac{2}{15}\times\frac{4}{3}\times\frac{9}{8}\right)\)
\(=\left(1\div\frac{4}{5}\right)\times\left(\frac{3}{15}-\frac{1}{5}\right)\)
\(=\frac{5}{4}\times0\)
\(=0\)
Bài 1:
\(\left(\frac{9}{4}:\frac{6}{5}\right)-1=\frac{45}{24}-1=\frac{15}{8}-1=\frac{7}{8}\)
\(2+\left(\frac{1}{4}\times\frac{2}{5}\right)=2+\frac{2}{10}=2+\frac{1}{5}=\frac{11}{5}\)
Bài 2:
\(\frac{3}{5}+\frac{2}{3}=\frac{9}{15}+\frac{10}{15}=\frac{19}{15}\)
\(1-\frac{9}{11}=\frac{1}{1}-\frac{9}{11}=\frac{11}{11}-\frac{9}{11}=\frac{2}{11}\)
\(\frac{7}{9}\times\frac{3}{14}=\frac{21}{126}=\frac{3}{18}\)
\(\frac{15}{7}:\frac{5}{21}=\frac{315}{35}=9\)
A = 3./4 * 5/9 + ( 5/2 - 1/2 )
A = 3/4 * 5/9 + 2
A = 5/ 12 + 2
A = 2 5/12 hoặc 29/12
**** cho mình nhé
3/4 . 5/9 + ( 5/2 + 1/2 ) : 2
=3/4 . 5/9 + 3 : 2
=47/36 + 3/2
=101/36
tk cho mk nha
tk thì mk sẽ kb cho
A = \(\frac{3}{4}\)x a + ( b + \(\frac{1}{2}\)) : 2
A = \(\frac{3}{4}x\frac{5}{9}\)+ ( \(\frac{5}{2}+\frac{1}{2}\)) : 2
A = \(\frac{5}{12}\)+ 3 : 2
A = \(\frac{41}{12}\): 2
A = \(\frac{41}{12}x\frac{1}{2}\)
A = \(\frac{41}{24}\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
( GẠCH BỎ CÁC PHÂN SỐ GIỐNG NHAU)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}\)
\(=\frac{4}{10}=\frac{2}{5}\)
CHÚC BẠN HỌC TỐT!!!!!!!!
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.....+\frac{1}{9\times10}\)
Đặt \(A=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.....+\frac{1}{9\times10}\)
Nhận xét:
\(\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4\times5}=\frac{1}{4}-\frac{1}{5};......;\frac{1}{9\times10}=\frac{1}{9}-\frac{1}{10}\)
Do đó \(A=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{1}{2}-\frac{1}{10}\)
\(A=\frac{2}{5}\)
M = \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}.\right)\left(1-\frac{1}{16}\right)....\left(1-\frac{1}{10000}\right)\)
\(=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}=\frac{3.8.15...9999}{4.9.16....10000}=\frac{\left(1.3\right).\left(2.4\right).\left(3.5\right)....\left(99.101\right)}{\left(2.2\right).\left(3.3\right).\left(4.4\right)....\left(100.100\right)}\)
\(=\frac{\left(1.2.3...99\right).\left(3.4.5..101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}=\frac{1.101}{100.2}=\frac{101}{200}\)
4-\(\frac{4}{9}\)- [\(2\frac{1}{4}\)+1\(\frac{4}{9}\)]
=\(4-\frac{4}{9}-2\frac{1}{4}-1\frac{4}{9}\)
=\(\left(4-2\frac{1}{4}\right)-\left(\frac{4}{9}-1\frac{4}{9}\right)\)
=\(1\frac{3}{4}-\left(-1\right)\)
=\(2\frac{3}{4}\)