Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{3}{4}\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow a=3k;b=4k\) Thay vào \(\frac{2a-5b}{a-3b}\) ta được :
\(\frac{2a-5b}{a-3b}=\frac{2.3k-5.4k}{3k-3.4k}=\frac{6k-20k}{3k-12k}=\frac{k\left(6-20\right)}{k\left(3-12\right)}=\frac{-12}{-9}=\frac{4}{3}\)
2a-5b/a-3b =\(\frac{2\left(\frac{a}{b}\right)-5}{\frac{a}{b}-5}\) =2(3/4)-5/3/4-5
=14/9
\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{2a-5b}{-14}=\dfrac{a-3b}{-9}=\dfrac{4a+b}{16}=\dfrac{8a-2b}{16}\\ \Leftrightarrow A=\dfrac{-14}{-9}-\dfrac{16}{16}=\dfrac{14}{9}-1=\dfrac{5}{9}\)
a)Thay \(x=\dfrac{-2}{3}\) vào\(x^3-6x^2-9x-3\):
\(\left(\dfrac{-2}{3}\right)^3-6\left(\dfrac{-2}{3}\right)^2+9.\dfrac{2}{3}-3\)
\(=\dfrac{-8}{27}-\dfrac{8}{3}+6-3\)
\(=\dfrac{-8-72}{27}+3=\dfrac{-80}{27}+3=\dfrac{1}{27}\)
b) Ta có: \(\dfrac{a}{b}=\dfrac{3}{4}\Rightarrow a=3k;b=4k\)
\(\Rightarrow\dfrac{2a-5b}{a-3b}=\dfrac{6k-20k}{3k-12k}=\dfrac{-14k}{-9k}=\dfrac{14}{9}\)
c) Có: a-b=7\(\Rightarrow a=b+7\)
Thay vào \(\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}=\dfrac{2b+21}{2b+21}+\dfrac{2b-7}{2b-7}\)
\(=1+1=2\)
Ta có :
\(\frac{a}{b}=\frac{3}{4}\)\(\Leftrightarrow\)\(\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\)
\(\Rightarrow\)\(a=3k\)
\(\Rightarrow\)\(b=4k\)
Thay \(a=3k\) và \(b=4k\) vào \(A=\frac{2a-5b}{a-b}\) ta được : \(A=\frac{2.3k-5.4k}{3k-4k}\)
\(A=\frac{6k-20k}{3k-4k}=\frac{k\left(6-20\right)}{k\left(3-4\right)}=\frac{6-20}{3-4}=\frac{-14}{-1}=\frac{14}{1}=14\)
Vậy giá trị của biểu thức \(A=\frac{2a-5b}{a-b}=14\) khi \(\frac{a}{b}=\frac{3}{4}\)
Chúc bạn học tốt ~
`Answer:`
a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)
Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)
\(E=\frac{3a+2b}{4a-3b}\)
\(=\frac{3k+2.3k}{4k-3.3k}\)
\(=\frac{3k+6k}{4k-9k}\)
\(=\frac{9k}{-5k}\)
\(=-\frac{9}{5}\)
b. Thay `a-b=5` vào biểu thức `F`, ta được:
\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)
\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)
\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)
\(=1+1\)
\(=0\)
TA CÓ\(\frac{2A-5B}{A-3B}=2\frac{A}{B}-5\) / A-3B
=\(2.\left(\frac{3}{4}\right)-5\)/ 3/4-3
=\(\frac{14}{9}\)