K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

Đặt 2003=x

Thay vào E ta có : E =[x^2.(x+10) +31.(x+1) -1].[ x.(x+5) +4)]/[(x+1).(x+2).(x+3).(x+4).(x+5)]

Vì x.(x+5) +4 = (x+1).(x+4)

x^2.(x+10) + 31.(x+1) - 1= x^3 + 10 x^2 +31.x +30 = (x+2).(x+3).(x+5)

=> E=1

Vậy E=1

26 tháng 8 2015

ai giải giúp mình đi mai phải nộp rồi

15 tháng 12 2019

Đặt 2003=x

Thay vào E ta có : E =[x^2.(x+10) +31.(x+1) -1].[ x.(x+5) +4)]/[(x+1).(x+2).(x+3).(x+4).(x+5)]

Vì x.(x+5) +4 = (x+1).(x+4)

x^2.(x+10) + 31.(x+1) - 1= x^3 + 10 x^2 +31.x +30 = (x+2).(x+3).(x+5)

=> E=1

Vậy E=1

15 tháng 12 2019

Đặt 2003=x

Thay vào E ta có : E =[x^2.(x+10) +31.(x+1) -1].[ x.(x+5) +4)]/[(x+1).(x+2).(x+3).(x+4).(x+5)]

Vì x.(x+5) +4 = (x+1).(x+4)

x^2.(x+10) + 31.(x+1) - 1= x^3 + 10 x^2 +31.x +30 = (x+2).(x+3).(x+5)

=> E=1

Vậy E=1

19 tháng 6 2015

\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+0\)

\(\Rightarrow x^2+y^2+z^2=0\)

\(\Rightarrow x=y=z=0\)

\(P=\left(-1\right)^{2003}+0^{2004}+1^{2005}=0\)

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

20 tháng 12 2019

a) Ta có: A = \(\frac{x+1}{x-2}+\frac{x-1}{x+2}+\frac{x^2+4x}{4-x^2}\)

A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2+3x+2+x^2-3x+2-x^2-4x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b) Với x = 4 => A = \(\frac{4-2}{4+2}=\frac{2}{8}=\frac{1}{4}\)

c) ĐKXĐ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\4-x^2\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne2\\x\ne-2\\x\ne\pm2\end{cases}}\) <=> \(x\ne\pm2\)

Ta có: A = \(\frac{x-2}{x+2}=\frac{\left(x+2\right)-4}{x+2}=1-\frac{4}{x+2}\)

Để A  nhận giá trị nguyên dương <=> \(1-\frac{4}{x+2}\) nguyên dương

<=> \(-\frac{4}{x+2}\) nguyên dương <=> -4 \(⋮\)x + 2

 <=> x + 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}

Lập bảng: 

x + 2 1 -1 2 -2 4 -4
  x-1(tm)-3(tm)0(tm)-4(tm) 2(ktm)-6(tm)

Vậy ....