K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{1}{27}x^6y^6z^3:\dfrac{-1}{3}x^2y^2z=\dfrac{-1}{9}x^4y^4z^2\)

Khi x=-2, y=-3, z=0,1 thì \(A=\dfrac{-1}{9}\cdot16\cdot81\cdot0.01=-\dfrac{36}{25}\)

b: \(B=\dfrac{\left(a-b+c\right)^5}{\left(a-b+c\right)^2}=\left(a-b+c\right)^3\)

Khi a=5;b=2;c=-7/2 thì \(B=\left(5-2-\dfrac{7}{2}\right)^3=\left(3-\dfrac{7}{2}\right)^3=\left(-\dfrac{1}{2}\right)^3=\dfrac{-1}{8}\)

c: \(=\dfrac{\left(3-2x^2\right)\left(9+6x^2+4x^4\right)}{9+6x^2+4x^4}=3-2x^2\)

Khi x=-3 thì \(C=3-2\cdot\left(-3\right)^2=3-18=-15\)

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

2 tháng 12 2017

Câu 1:

\(\dfrac{2^{35}.45^{25}.13^{22}.35^{16}}{9^{26}.65^{22}.28^{17}.25^9}\)

\(=\dfrac{2^{35}.9^{25}.5^{25}.13^{22}.7^{16}.5^{16}}{9^{26}.13^{22}.5^{22}.2^{17}.2^{17}.7^{17}.5^9.5^9}\)

Bạn rút gọn sẽ còn lại:

\(=\dfrac{2.5}{7.9}=\dfrac{10}{63}\)

2 tháng 12 2017

Câu 4:

\(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)\(K=\left(x^2y\right)^2-2.x^2y.3+3^2-\left[\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y^2-y^3\right]+6xy^3-x^4y^2+8x^3-6x^2y-y^3\)\(K=x^4y^2-6x^2y+9-8x^3+12x^2y-6xy^2+y^3+6xy^2-x^4y^2+8x^3-6x^2y-y^3\)\(K=9\)

* Phân tích đa thức thành nhân tử: 1/ 25x2 - 10xy + y2 2/ 8x3 + 36x2y + 54xy2 + 27y3 3/ (a2 + b2 - 5)2 - 4 (ab + 2)2 4/ (a + b + c)3 - a3 - b3 - c3 5/ 2x3 + 3x2 + 2x + 3 6/ x3z + x2yz - x2z2 - xyz2 7/ x3 + y (1 - 3x2) + x (3y2 - 1) - y3 8/ x3 + 3x2y + 3xy2 + y + y3 9/ x2 - 6x + 8 10/ x2 - 8x + 12 11/ a2 (b - c) + b2 (c - a) + c2 (a - b) 12/ x3 - 7x - 6 13/ x4 + 4 14/ a4 + 64 15/ x5 + x + 1 16/ x5 + x - 1 17/ (x2 + x)2 - 2 (x2 + x) - 15 18/ (x + 2) (x + 3) (x + 5) -...
Đọc tiếp

* Phân tích đa thức thành nhân tử:

1/ 25x2 - 10xy + y2

2/ 8x3 + 36x2y + 54xy2 + 27y3

3/ (a2 + b2 - 5)2 - 4 (ab + 2)2

4/ (a + b + c)3 - a3 - b3 - c3

5/ 2x3 + 3x2 + 2x + 3

6/ x3z + x2yz - x2z2 - xyz2

7/ x3 + y (1 - 3x2) + x (3y2 - 1) - y3

8/ x3 + 3x2y + 3xy2 + y + y3

9/ x2 - 6x + 8

10/ x2 - 8x + 12

11/ a2 (b - c) + b2 (c - a) + c2 (a - b)

12/ x3 - 7x - 6

13/ x4 + 4

14/ a4 + 64

15/ x5 + x + 1

16/ x5 + x - 1

17/ (x2 + x)2 - 2 (x2 + x) - 15

18/ (x + 2) (x + 3) (x + 5) - 24

19/ (x2 + 8x + 7) (x2 + 8x + 15) + 15

20/ (x2 + 3x + 1) (x2 + 3x + 2) - 6

21/ x2 + 4xy + 3y2

22/ 2x2 - 5xy + 2y2

23/ x2 (y - z) + y2 (z - x) + z2 (x - y)

24/ 2x2 - 7xy + 3y2 + 5xz - 5yz + 2z2

25/ x2 - 7x + 10

26/ 4x2 - 3x - 1

27/ x2 - x - 12

28/ bc (b + c) + ac (c - a) - ab (a + b)

29/ x2y + xy2 + x2z + xz2 + y2z + yz2 + 2xyz

30/ (a - b)3 + (b - c)3 + (c - a)3

31/ ab (a - b) + bc (b - c) + ca (c - a)

32/ bc (b + c) + ca (c + a) + ba (a + b) + 2abc

Giúp mình với, giải chi tiết nha, nhiều bài mà mình đang cần gấp lắm!

3
18 tháng 9 2018

1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)

2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)

4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

5, \(2x^3+3x^2+2x+3\)

\(=x^2\left(2x+3\right)+2x+3\)

\(=\left(x^2+1\right)\left(2x+3\right)\)

6, \(x^3z+x^2yz-x^2z^2-xyz^2\)

\(=x^3z-x^2z^2+x^2yz-xy^2\)

\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)

\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)

\(=xz\left(x+y\right)\left(x-z\right)\)

8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)

9, \(x^2-6x+8\)

\(=x^2-4x-2x+8\)

\(=x\left(x-4\right)-2\left(x-4\right)\)

\(=\left(x-2\right)\left(x-4\right)\)

10, \(x^2-8x+12\)

\(=x^2-6x-2x+12\)

\(=x\left(x-6\right)-2\left(x-6\right)\)

\(=\left(x-2\right)\left(x-6\right)\)

Chỗ còn lại mai làm nốt nha.

19 tháng 9 2018

Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha

11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)

\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)

\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

12, \(x^3-7x-6\)

\(=x^3-3x^2+3x^2-9x+2x-6\)

\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+2\right)\)

\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)

13, \(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-4x^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

14, \(a^4+64\)

\(=a^4+16a^2+64-16a^2\)

\(=\left(a^2+8\right)^2-16a^2\)

\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)

15, \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)

16, \(x^5+x-1\)

\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)

\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)

17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)

19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)

Đặt \(x^2+8x+7=a\) ta có:

(*) \(\Leftrightarrow a\left(a+8\right)+15\)

\(\Leftrightarrow a^2+8a+15\)

\(\Leftrightarrow a^2+3a+5a+15\)

\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)

\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)

Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)

Đặt \(x^2+3x+1=a\) ta có:

(*) \(\Leftrightarrow a\left(a+1\right)-6\)

\(\Leftrightarrow a^2+a-6\)

\(\Leftrightarrow a^2+3a-2a-6\)

\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)

\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)

Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)

19 tháng 10 2017

Bài 1:

a) 25x2 - 10xy + y2 = (5x - y)2

b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)

c) 8x3 + 36x2y + 54xy2 + 27y3

= 8x3 + 27y3 + 36x2y + 54xy2

= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)

= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)

= (2x + 3y)(4x2 + 12xy + 9y2)

= (2x + 3y)(2x + 3y)2 = (2x + 3y)3

c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2

= (a2 + b2 - 5)2 - (2ab + 4)2

= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)

= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)

= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)

= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)

pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm

19 tháng 10 2017

Bài 2:

a) 2x3 + 3x2 + 2x + 3

= 2x3 + 2x + 3x2 + 3

= 2x(x2 + 1) + 3(x2 + 1)

= (x2 + 1)(2x + 3)

b)x3z + x2yz - x2z2 - xyz2

= xz(x2 + xy - xz - yz)

= \(xz\left [ x(x + y) - z(x + y) \right ]\)

= xz(x + y)(x - z)

c) x2y + xy2 - x - y

= xy(x + y) - (x + y)

= (x + y)(xy - 1)

d) 8xy3 - 5xyz - 24y2 + 15z

= 8xy3 - 24y2 - 5xyz + 15z

= 8y2(xy - 3) - 5z(xy - 3)

= (xy - 3)(8y2 - 5z)

e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3

= x3 - y3 + y - 3x2y + 3xy2 - x

= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)

= (x - y)(x2 + xy + y2 - 3xy - 1)

= (x - y)(x2 - 2xy + y2 - 1)

= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)

= (x - y)(x - y - 1)(x - y + 1)

câu f tương tự

19 tháng 10 2017

bài 1.

a) (4x3 - 2)(2x3- x + \(\dfrac{5}{8}\))

= 8x6 - 4x4 + \(\dfrac{5}{2}\)x3 - 4x3 + 2x - \(\dfrac{5}{4}\)

b) (x2y2 - xy + y)(x - y)

= x3y2 - x2y + xy - x2y3 + xy2 - y2

c) (x + 2y)(x2 - 2xy + y2)

= x3 + 8y3

d) (7x - 3)(7x + 3) + (2x - 3)2

= 49x2 - 9 + 4x2 - 12x + 9

= 53x2 - 12x

Bài 2.

a) 4(3x - 1) - 2(5 - 3x) = 24

12x - 4 - 10 + 6x - 24 = 0

18x - 38 = 0

\(\Rightarrow\) 18x = 38

\(\Rightarrow\) x = \(\dfrac{19}{9}\)

b) 4x2 - 9 = 0

\(\Rightarrow\) 4x2 = 9

\(\Rightarrow\) x2 = \(\dfrac{9}{4}\)

\(\Rightarrow\) x = \(\pm\dfrac{3}{2}\)

vậy x = 3/2 hoặc x = -3/2

c) x3 - 25x = 0

x(x2 - 25) = 0

x(x - 5)(x + 5) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

d) (x2 + 4)2 - 16x2 = 0

(x2 + 4 - 4x)(x2 + 4 + 4x) = 0

\(\Rightarrow\) (x - 2)2.(x + 2)2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(x+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Bài 3.

a) x(x + y) + y(x + y)

Ta có:

x(x + y) + y(x + y)

= (x + y)(x + y)

= (x + y)2

Thay x = 2004 và y = -2003 vào biểu thức đại số ta có:

[2004 + (-2003)]2 = 12

= 1

b) x2 + xy - xz - yz

Ta có:

x2 + xy - xz - yz

= (x2 + xy) - (xz + yz)

= x(x + y) - z(x + y)

= (x - z)(x + y)

Thay x= 6,5; y = 3,5 và z = 37,5 vào biểu thức đại số, ta có:

(6,5 - 37,5)(6,5 + 3,5)

= -31 . 10

= -310

c) x2 - 6xy + 9y2

ta có:

x2 - 6xy + 9y2

= (x - 3y)2

Thay x = 14 và y = -2 vào biểu thức đại số, ta có:

[14 - (-2)]2 = (14 + 2)2

= 162 = 256

Nhớ tik mik nhé không lần sau mik ko giúp đâu leuleuleuleuleuleu

có j ko hỉu cứ bình luận ở dướiokokok

20 tháng 10 2017

Cảm ơn bạn nhiều nhe1^-^

16 tháng 7 2017

Bài 1 : Ta có :

x^3-x^2-7x-a x-3 x^2 x^3-3x^2 2x^2-7x-a + 2x 2x^2 -6x -x - a - 1 -x + 3

Để \(x^3-x^2-7x-a\) chia hết cho x-3 thì :

-x - a = - x + 3

<=> -x + x - a = 3

<=> a = - 3

Vậy GT của a là - 3

16 tháng 7 2017

Bài 2 :

a) \(x^2-2xy-9z^2+y^2\)

= \(\left(x^2-2xy+y^2\right)-9z^2\)

= \(\left(x-y\right)^2-\left(3z\right)^2\)

= \(\left(x-y-3z\right)\left(x-y+3z\right)\) (1)

Thay x = 6 ; y=-4 ; z= 30 vào BT (1) ta được :

\(\left(x-y-3z\right)\left(x-y+3z\right)=\left(6+4-3.30\right)\left(6+4+3.30\right)\) = (-80) .100 = -8000

Vậy tại x = 6 ; y=-4 ; z=30 thì GT của BT (1) là -8000

b) \(\left(x^3-y^3\right):\left(x^2+xy+y^2\right)\)

= \(\left(x-y\right)\left(x^2+xy+y^2\right):\left(x^2+xy+y^2\right)\)

= ( x- y ) (2)

Thay x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) vào biểu thức (2) ta được :

\(\left(x-y\right)=\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{1}{3}\)

Vậy tại x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) thì GT của BT (2) là \(\dfrac{1}{3}\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm