K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)

=1+1+1+1/2

=3,5

b: \(=\left(\sin^210^0+\sin^280^0\right)-\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0\right)-\left(\sin^240^0+\sin^250^0\right)\)

=1-1-1+1/4

=-1+1/4=-3/4

c: \(=\left(\sin15^0-\cos75^0\right)+\left(\sin75^0-\cos15^0\right)+\sin30^0\)

=1/2

31 tháng 7 2018

bài 1

a) \(M=\sin^242^o+\sin^243^o+\sin^244^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)

\(M=\cos^248^o+\cos^247^o+\cos^246^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)

\(M=\left(\sin^248^o+\cos^248^o\right)+\left(\sin^247^o+\cos^247^o\right)+\left(\sin^246^o+\cos^246^o\right)+\sin^245^o\)

\(M=1+1+1+0,5\)

\(M=3,5\)

31 tháng 7 2018

bài 1

b) \(N=\cos^215^o-\cos^225^o+\cos^235^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)

\(N=\sin^275^o-\sin^265^o+\sin^255^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)

\(N=\left(\sin^275^o+\cos^275^o\right)-\left(\sin^265^o+\cos^265^o\right)+\left(\sin^255^o+\cos^255^o\right)-\cos^245^o\)

\(N=1-1+1-0,5\)

\(N=0,5\)

1 tháng 10 2020

a, cos220o + cos240o + cos250o + cos270o

= (cos220o + cos270o) + (cos240o + cos250o)

= (cos220o + sin220o) + (cos240o + sin240o)

= 1 + 1 = 2

Mình nghĩ chắc sin285o là sin255o

b, sin225o + sin245o + sin265o + sin255o

= (sin225o + sin265o) + (sin245o + sin255o)

= (sin225o + cos225o) + (sin245o + cos245o)

= 1 + 1 = 2

Chúc bn học tốt!

2 tháng 10 2020

Cảm ơn bạn nhiều ạk

a: \(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+sin^245^0\)

\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)

b: \(=\left(sin^242^0+sin^248^0\right)+\left(sin^243^0+sin^247^0\right)+...+sin^245^0\)

=1+1+1+1/2

=3,5

c: \(=tan35^0\cdot tan55^0\cdot tan40^0\cdot tan50^0\cdot tan45^0=1\)

d: \(=\left(cos^215^0+cos^275^0\right)-\left(cos^225^0+cos^265^0\right)+\left(cos^235^0+cos^255^0\right)-\dfrac{1}{2}\)

=1-1+1-1/2

=1/2

29 tháng 10 2018

a) 1- \(sin^2\alpha\)= \(cos^2\alpha\)

b) (\(1-cos\alpha\))(\(1+cos\alpha\)) = 1 - cos2\(\alpha\) = sin2\(\alpha\)

c) 1 + cos2\(\alpha\) + sin2\(\alpha\) = \(1+1=2\)

d) sin\(\alpha\) - sin\(\alpha.cos^2\alpha\)

= \(sin\alpha\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)

e) \(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha\)

= \(\left(sin^2\alpha\right)^2+2sin^2\alpha.cos^2\alpha+\left(cos^2\alpha\right)^2\)

= \(\left(sin^2\alpha+cos^2\alpha\right)^2=1^2=1\)

f) \(tan^2\alpha-sin^2\alpha.tan^2\alpha\)

= \(tan^2\alpha\left(1-sin^2\alpha\right)=tan^2\alpha.cos^2\alpha=sin^2\alpha\)

g) \(cos^2\alpha+tan^2\alpha.cos^2\alpha\)

= \(cos^2\alpha\left(1+tan^2\alpha\right)=cos^2\alpha.\dfrac{1}{cos^2\alpha}=1\)

h) \(tan^2\alpha\left(2cos^2\alpha+sin^2\alpha-1\right)\)

= \(tan^2\alpha\left[cos^2\alpha+\left(cos^2\alpha+sin^2\alpha\right)-1\right]\)

= \(tan^2\alpha\left(cos^2\alpha+1-1\right)\)

= \(tan^2\alpha.cos^2\alpha=sin^2\alpha\)

a: \(A=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)+...+\left(\sin^240^0+\sin^250^0\right)\)

=1+1+1+1

=4

b: \(B=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+...+\cos^245^0\)

\(=1+1+1+1+\dfrac{1}{2}=\dfrac{9}{2}\)