Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Ta có :
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=x^3+3x^2-5x-15-x^3+-3x^2+4x\)
\(=-x-15\)
a ) Thay \(x=0\) vào biểu thức trên ta có : \(-0-15=-15\)
b ) Thay \(x=-15\) vào biểu thức trên ta có : \(-\left(-15\right)-15=0\)
c ) Thay \(x=0,15\) vào biểu thức trên ta có : \(-0,15-15=-15,15\)
\(1;a,A=x^2+20x+101\)
\(A=x^2+2.10x+10^2+1\)
\(A=\left(x+10\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = -10
Vậy Min A = 1 <=> x = -10
Bài 1:
a) ĐKXĐ: \(x\ne\pm5\)
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(=\frac{x-5}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{2x+10}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x-5+\left(2x+10\right)-\left(2x+10\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x-5}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+5}\)
b) \(B=9x^2-42x+49=\left(3x-7\right)^2\)
Tại \(x=-3\)thì: \(B=\left[3.\left(-3\right)-7\right]^2=256\)
Bài 2:
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
\(=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)
b) \(A=4\)\(\Rightarrow\)\(\frac{4}{x-3}=4\)
\(\Rightarrow\)\(4\left(x-3\right)=4\)\(\Leftrightarrow\)\(x-3=1\)\(\Leftrightarrow\)\(x=4\) (t/m ĐKXĐ)
Vậy....
Rút gọn biểu thức:
A = (x2 – 5)(x + 3) + (x + 4)(x – x2)
= x2.(x + 3) + (–5).(x + 3) + x.(x – x2) + 4.(x – x2)
= x2.x + x2.3 + (–5).x + (–5).3 + x.x + x.(–x2) + 4.x + 4.(–x2)
= x3 + 3x2 – 5x – 15 + x2 – x3 + 4x – 4x2
= (x3 – x3) + (3x2 + x2 – 4x2) + (4x – 5x) – 15
= –x – 15.
a) Nếu x = 0 thì A = –0 – 15 = –15
b) Nếu x = 15 thì A = –15 – 15 = –30
c) Nếu x = –15 thì A = –(–15) – 15 = 15 – 15 = 0
d) Nếu x = 0,15 thì A = –0,15 – 15 = –15,15
\(a.\)
Thay \(x=0\) vào \(\left(x-x^2\right)\) , ta được :
\(\left(0-0^2\right)=0\)
\(\Rightarrow\left(x^2-5\right)\left(x+3\right)\left(x+4\right)\left(x-x^2\right)=\left(x^2-5\right)\left(x+3\right)\left(x+4\right).0=0\)
Tương tự các câu còn lại
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)
\(=-2x^2-x-15\)
a) Thay \(x=0\) vào biểu thức ta có:
\(-2\times0^2-0-15=15\)
b) Thay \(x=15\) vào biểu thức ta có:
\(-2\times15^2-15-15=-480\)
c) Thay \(x=-15\) vào biểu thức ta có:
\(-2\times\left(-15\right)^2+15-15=-450\)
d) Thay \(x=0,15\) vào biểu thức ta có:
\(-2\times0,15-0,15-15=-15,45\)
a) Với x = 0 thì ta được
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=\left(0-5\right)\left(0+3\right)+\left(0+4\right)\left(0-0\right)\)
\(=-5.3+0\)
\(=-15\)
b) Với x = 15 thì ta được
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=\left(15^2-5\right)\left(15+3\right)+\left(15+4\right)\left(15-15^2\right)\)
\(=220.18+19.\left(-210\right)\)
\(=3960-3990\)
\(=-30\)
c) Với x = -15 thì ta được
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=\left[\left(-15\right)^2-5\right]\left(-15+3\right)+\left(-15+4\right)\left[-15-\left(-15\right)^2\right]\)
\(=220.\left(-12\right)+\left(-11\right).\left(-240\right)\)
\(=-2640+2640\)
\(=0\)
d) Với x = 0,15 thì ta được
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
\(=\left[\left(0,15\right)^2-5\right]\left(0,15+3\right)+\left(0,15+4\right)\left[0,15-\left(0,15\right)^2\right]\)
\(=-4,9775.3,15+4,15.0,1275\)
\(=-15,679125+0,529125\)
\(=-15,15\)