Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)
\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)
\(P=\frac{1}{2y-x}\)
Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)
a) \(x^2+\frac{1}{3}+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2\)
Thay \(x=\frac{-7}{6}\)vào biểu thức ta được: \(\left(\frac{-7}{6}+\frac{1}{6}\right)^2=\left(-1\right)^2=1\)
b) \(x^3-9x^2+27x-27=\left(x-3\right)^3\)
Thay \(x=103\)vào biểu thức ta được: \(\left(103-3\right)^2=100^2=10000\)
c) \(4x^2-y^2-2y-1=4x^2-\left(y^2+2y+1\right)\)
\(=4x^2-\left(y+1\right)^2=\left(2x-y-1\right)\left(2x+y+1\right)\)
Thay \(x=234\)và \(y=465\)vào biểu thức ta được:
\(\left(2.234-465-1\right)\left(2.234+465+1\right)=2.934=1868\)
a) Ta có: \(x^2+\frac{1}{3}x+\frac{1}{36}=x^2+2\cdot\frac{1}{6}\cdot x+\left(\frac{1}{6}\right)^2\)
\(=\left(x+\frac{1}{6}\right)^2\) , tại \(x=-\frac{7}{6}\) thì giá trị của BT là:
\(\left(-\frac{7}{6}+\frac{1}{6}\right)^2=1^2=1\)
b) Ta có: \(x^3-9x^2+27x-27=\left(x-3\right)^3\)
Tại x = 103 thì giá trị của BT là:
\(\left(103-3\right)^3=100^3=1000000\)
c) Ta có: \(4x^2-y^2-2y-1\)
\(=\left(2x\right)^2-\left(y+1\right)^2\)
\(=\left(2x-y-1\right)\left(2x+y+1\right)\)
Tại x = 234, y = 465 thì giá trị của BT là:
\(\left(2\cdot234-465-1\right)\left(2\cdot234+465+1\right)\)
\(=2\cdot934=1868\)
Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)
\(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(C=\frac{x+1}{2x^2+y+2}\)
Ta có:
A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)
=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)
B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
=>\(P=\left(A:B\right):C\)
\(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)
\(=\frac{1}{2y-x}\)
=>\(P=\frac{1}{2y-x}\)
Thế x=-1,76 và y=3/25 vào P
=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)
a, A = (x-2)^2 = (12-2)^2 = 10^2 = 100
b, = x^3y^3-1/3x^2y^2+2x^2y^2z
k mk nha
\(a,4x^2\left(5x-3y\right)-5x^2\left(4x+y\right)\)
\(=20x^3-12x^2y-20x^3-5x^2y\)
\(=-17x^2y=-17\left(-2\right)^2.\left(-3\right)=204\)
\(b,\left(x-4\right)\left(x-2\right)-\left(x-1\right)\left(x-3\right)\)
\(=x^2-6x+8-x^2+4x-3\)
\(=-2x+5=-2.74+5=143\)
=2.(-1)2.(4.2-1-1) - 2.(-1)3
=2.(8-2)-2.(-1)
=2.6-(-2)
=12+2=14
Vậy giá trị của biểu thức = 14