Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x^2y+x^2y^2-3xy^2+5\right)-M=2x^3y-5xy^2+4\)
\(M=\left(2x^2y+x^2y^2-3xy^2+5\right)-\left(2x^3y-5xy^2+4\right)\)
\(=2x^2+x^2y^2+2xy^2-2x^3y+1\)
Thay vào,ta có:
\(M=2\cdot\left(-\frac{1}{2}\right)^2+\left(-\frac{1}{2}\right)^2\cdot\left(-\frac{1}{2}\right)^2-2\cdot\left(-\frac{1}{2}\right)^3\cdot\left(-\frac{1}{2}\right)+1\)
\(=\frac{1}{2}+\frac{1}{16}-\frac{1}{8}+1\)
tự tính nốt:3
a) M=\(2xy^2+x^2y^2-3xy^2+5\) - \(2x^3y-5xy^2+4\)
=\(\left(2xy^2-3xy^2-5xy^2\right)\)+ \(x^2y^2\)+ ( 5+4 ) \(-2x^3y\)=\(-6xy^2\)+ \(x^2y^2\)+9 - \(2x^3y\)
bậc của đa thức là: 4
b) tại x=\(\frac{-1}{2}\); y=\(\frac{-1}{2}\)ta có:
M=\(-6xy^2+x^2y^2+9-2x^3y\)=\(-6.\left(\frac{-1}{2}\right)\left(\frac{-1}{2}\right)^2\)+ \(\left(\frac{-1}{2}\right)^2\left(\frac{-1}{2}\right)^2\)+ 9 - \(2\left(\frac{-1}{2}\right)^3\left(\frac{-1}{2}\right)\)
=\(3.\frac{1}{4}\)+ \(\frac{1}{8}\)+ 9 - \(\frac{1}{8}\)=\(\frac{3}{4}\)+ \(\frac{1}{8}\)+ 9 - \(\frac{1}{8}\)=\(\frac{3}{4}+9\)=\(\frac{3}{4}+\frac{36}{4}\)=\(\frac{39}{4}\)
vậy tại \(x=\frac{-1}{2}\); \(y=\frac{-1}{2}\)thì M=\(\frac{39}{4}\)
dùng hằng đẳng thức nhé bạn
\(N=2x^4+4x^2y^2+2y^4-y^4-x^2y^2+y^2\)
\(N=2\left(x^4+2x^2y^2+y^4\right)-y^2\left(x^2+y^2\right)+y^2\)
\(N=2\left(x^2+y^2\right)^2-y^2\left(x^2+y^2\right)+y^2\)
mà ta có: \(x^2+y^2=1\)
\(\Rightarrow N=2-y^2+y^2=2\)
chúc bạn học tốt
Ta có:
\(2x^4+3x^2y^2+y^4+y^2=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2\)
\(=2\left(x^2+y^2\right)=2.1=2\)
\(2x^4+3x^2y^2+y^4+y^2\text{ v}ớ\text{i }x^2+y^2=1\)
\(=2x^2.x^2+2x^2y^2+x^2y^2+y^2.y^2+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2.1+y^2.1+y^2\)
\(=2x^2+y^2+y^2\)
\(=2x^2+2y^2\)
\(=2\left(x^2+y^2\right)=2.1=2\)
\(M=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
Vật M=2
P=x3+x2y-2x2-y(x+y)+3y+x+2018
P=x2.(x+y-2)-y.(x+y)+3y+x+2018
Thay x+y=2 vào P ta có :
P=x2.(2-2)-2y+3y+x+2018
P=0.x2+y+x+2018
P=0+2+2018(x+y=2)
P=2020
Vậy với x+y=2 thì P=2020
Mik tham khảo thêm ở bài bạn này nha https://olm.vn/hoi-dap/detail/102286367829.html
Vì \(\left|2x+1\right|\ge0;\left|x+y-\frac{1}{2}\right|\ge0\)
Mà \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\Rightarrow\orbr{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)(1)
Thế (1) vào A
\(\Rightarrow A=4.\left(-\frac{1}{2}\right)^3.\left(\frac{1}{4}\right)^2-\frac{1}{4}.\left(-\frac{1}{2}\right)+2.\frac{1}{4}-5\)
\(\Rightarrow A=-\frac{1}{2}+\frac{1}{8}+\frac{1}{2}-5\)
\(\Leftrightarrow A=\frac{1}{8}-5=\frac{1}{8}-\frac{40}{8}=-\frac{39}{8}\)
\(M=2x^4+3x^2y^2+y^4+y^2\) với \(x^2+y^2=1\)
\(=2x^2.x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2.1+y^2.1+y^2\)
\(=2x^2+y^2+y^2\)
=\(2\left(x^2+y^2\right)\)
\(=2.1=2\)
\(\Rightarrow M=2\)