Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{12}.\left(2^{18}+2^8\right)}{2^{12}.\left(1+2^{10}\right)}=\frac{2^8.\left(2^{10}+1\right)}{1+2^{10}}=2^8\)
\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{3^{10}.\left(11+5\right)}{3^9.2^4}\)
\(=\frac{3^{10}.16}{3^9.2^4}\)
\(=\frac{3^{10}.2^4}{3^9.2^4}=3\)
3^10.(11+5) =3.16
3^9 . 2^4 1.16 bỏ số 16 thì được kết quả bằng 3
\(H=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(H=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(H=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(H=\frac{2^{19}.3^9+2^{18}.5.3^9}{2^{19}.3^9+2^{20}.3^{10}}\)
\(H=\frac{2^{18}.3^9.\left(2+5\right)}{2^{19}.3^9.\left(1+2.3\right)}\)
\(H=\frac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+6\right)}\)
\(H=\frac{2^{18}.3^9.7}{2^{19}.3^9.7}=\frac{1}{2}\)
\(K=\frac{4^7.2^8}{3.2^{15}.16^2-5.2^2.\left(2^{10}\right)^2}\)
\(K=\frac{\left(2^2\right)^7.2^8}{3.2^{15}.\left(2^4\right)^2-5.2^2.2^{20}}\)
\(K=\frac{2^{14}.2^8}{3.2^{15}.2^8-5.2^{22}}\)
\(K=\frac{2^{22}}{3.2^{23}-5.2^{22}}\)
\(K=\frac{2^{22}}{2^{22}.\left(3.2-5\right)}=\frac{2^{22}}{2^{22}.1}=1\)
Ta có : \(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=3\)3
\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}.\left(11+5\right)}{3^9.2^4}\) \(=\frac{3^{10}.16}{3^9.2^4}=\frac{3^{10}.2^4}{3^9.2^4}=3\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(A=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(A=\frac{1-3}{1+5}\)
\(A=\frac{-1}{3}\)
a)\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{3.16}{2^4}=\frac{3.2^4}{2^4}=3\)
b)\(B=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^8.2^3.13}=\frac{2^{10}.78}{2^{11}.13}=3\)
c)\(C=\frac{4^9.36+64^4}{16^4.100}=\frac{2^{18}.2^2.3^2+2^{24}}{2^{16}.2^2.5^2}=\frac{2^{20}\left(3^2+2^4\right)}{2^{18}.5^2}=\frac{2^2.25}{25}=4\)
Ta có :\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)=\(\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)= \(\frac{2^{10}.\left(2^{10}+1\right)}{2^{12}.\left(2^{10}+1\right)}\)=\(\frac{2^{10}}{2^{12}}\)= 4.
phải là 1/4 chứ