Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm giá trị nhỏ nhất của biểu thức biết : N=|x+2020|-5, với x thuộc Z
mik cần gấp
giải nhanh giúp mik
\(N=\left|x+2020\right|-5\)
Ta có : \(\left|x+2020\right|\ge0\Rightarrow N\ge-5\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+2020\right|=0\Leftrightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy \(N_{min}=-5\Leftrightarrow x=-2020\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
What the hell sao tên y trang mk ko khác tí nào hết z
Thay x = -3 vào | x - 1 | + x - 2 ta được :
| -3 - 1 | -3 - 2
= | - 4 | -5
= 4 - 5
= -1
ta có 7-x3-x2-x=7-x(x2-x-1) vì x(x2-x-1) phải bé hơn 7
nên Giá trị lớn nhất của B là 7
Ta có
\(2017-\left(\frac{1}{4}+\frac{2}{5}+\frac{3}{6}+\frac{4}{7}+...+\frac{2017}{2020}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{4}+\frac{2}{5}+...+\frac{2017}{2020}\right)\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{2}{5}\right)+...+\left(1-\frac{2017}{2020}\right)\)
\(=\frac{3}{4}+\frac{3}{5}+....+\frac{3}{2020}\)
\(=\frac{3.5}{4.5}+\frac{3.5}{5.5}+\frac{3.5}{6.5}+...+\frac{3.5}{2020.5}\)
\(=3.5\left(\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\right)\)
\(=15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
Thế vào ta có
\(\frac{15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)}{\frac{1}{20}+\frac{1}{25}+...+\frac{1}{10100}}=15\)
Được cập nhật 41 giây trước (17:23)
Ta có :
2017−(14 +25 +36 +47 +...+20172020 )
=(1+1+...+1)−(14 +25 +...+20172020 )
=(1−14 )+(1−25 )+...+(1−20172020 )
=34 +35 +....+32020
=3.54.5 +3.55.5 +3.56.5 +...+3.52020.5
=3.5(14.5 +15.5 +16.5 +...+12020.5 )
=15.(1
Bạn hỏi câu này bên Hoidap247 đúng không nè? :)
a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)
Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy GTLN của P = 2019 tại \(x=-1\).
b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)
\(\Rightarrow2020-\left|2019-x\right|\le2020\)
Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)
\(\Rightarrow2019-x=0\)
\(\Rightarrow x=2019\)
Vậy GTLN của Q = 2020 tại \(x=2019\).
a) \(P=2019-\left(x+1\right)^{2020}\)
Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)
Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)
<=> x+1=0
<=> x=-1
Vậy MaxA=2019 đạt được khi x=-1
b) \(Q=2020-\left|2019-x\right|\)
Ta có \(\left|2019-x\right|\ge0\forall x\)
\(\Rightarrow2020-\left|2019-x\right|\ge2020\)
Dấu "=" xảy ra <=> |2019-x|=0
<=> 2019-x=0
<=> x=2019
Vậy MaxQ=2020 đạt được khi x=2019
ta có:
giá trị tuyệt đối của x-9 >hoặc bằng 0.vậy A nhỏ nhất =0 +10 =10
Ta có: \(|x-9|\ge0\forall x\)
\(\Rightarrow|x-9|+10\ge0+10\forall x\)
Hay A \(\ge10\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-9=0\)
\(\Leftrightarrow x=9\)
Vậy Min A =10 \(\Leftrightarrow x=9\)
a/
a/ 12,8 : 0,2 x 44,44 x 2 x 13,2 : 0,25
= 12,8 x 5 x 44,44 x 2 x 13,2 x 4
= 64 x 44,44 x 2 x 52,8
= 64 x 88,88 x 52,8
= 5688,32 x 52,8
= 300343,296
b/ 3,3 x 88,88 : 0,5 x 6,6 : 0,125 x 5
= 3,3 x 88,88 x 2 x 6,6 x 8 x 5
= 3,3 x 177,76 x 52,8 x 5
= 154864,512
12,8 / 0,2 * 44,44 * 2 * 13,2 / 0,25 = 300343, 296
3,3 * 88,88 / 0,5 * 6,6 / 0,125 * 5 = 154864, 512
Bạn nào trả lời câu hỏi của mik thì k
2020 - 0,15 x 0,25 x 32
= 2020 - 0,0375 x 32
= 2020 - 1,2
= 2018,8