Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow ab+bc+ca=\frac{-\left(a^2+b^2+c^2\right)}{2}=\frac{-2}{2}=-1\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2=1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=1\) (vì a+b+c=0)
Từ \(a^2+b^2+c^2=2\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Leftrightarrow a^4+b^4+c^4=4-2\left(a^2b^2+b^2c^2+c^2a^2\right)=4-2.1=2\)
Ta có: a + b + c = 0
=> ( a + b + c )2 = 0
=> a2 + b2 + c2 + 2ab +2ac+ 2bc = 0
=> 2 + 2( ab + ac + bc ) = 0
=> 2( ab + ac +bc ) = - 2
=> ab + ac + bc = -1
=> ( ab + ac + bc )2 = 1
=> a2b2 + a2c2 + b2c2 + 2a2bc + 2ab2c + 2abc2 = 1
=> a2b2 + a2c2 + b2c2 + 2abc( a + b + c ) = 1
=> a2b2 + a2c2 + b2c2 + 2abc x 0 = 1
=> a2b2 + a2c2 + b2c2 = 1 ( * )
Ta có: a2 + b2 + c2 = 2
=> ( a2 + b2 + c2 )2 = 22
=> a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2 = 4
=> a4 + b4 + c4 + 2( a2b2 + a2c2 + b2c2 ) = 4
Từ ( * ) => a4 + b4 + c4 + 2 x 1 = 4
=> a4 + b4 + c4 = 4 - 2 = 2
~~~~
Phần còn lại tương tự, cậu tự làm nhóe :3 Chúc cậu học tốt ~~
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow ab+bc+ca=-\frac{1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Lại có:\(a^2+b^2+c^2=1\Rightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Rightarrow a^4+b^4+c^4+\frac{1}{2}=1\)
\(\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)
từ : 1- a+b+c = 0
2- \(a^2+b^2+c^2=2\)
=> Các số trong đó là : -1;0;1
=> \(a^4+b^4+c^4=2\)
Bạn ấn ở Câu hỏi của Vu Dinh Son - Toán lớp 8 - Học toán với OnlineMath nhé
Ta có:
\(ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\frac{0-2010}{2}=-1005\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\)
\(=\left(-1005\right)^2-2abc.0=1005^2\)
\(\Rightarrow A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=2010^2-1005^2=2.1005^2=2020050\)
Ta có \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
+) Nếu \(a^2+b^2+c^2=2\) thì \(ab+bc+ac=\frac{-2}{2}=-1\Leftrightarrow\left(ab+bc+ac\right)^2=1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=1\)
Ta có : \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Leftrightarrow a^4+b^4+c^2+2=4\Leftrightarrow a^4+b^4+c^4=2\)
+ Nếu \(a^2+b^2+c^2=1\) làm tương tự
a+b+c=0
=> (a+b+c)2=0
=> a2+b2+c2+2ab+2bc+2ac=0
=> 2(ab+bc+ac)=-1
=> ab+bc+ac=\(\dfrac{-1}{2}\)
=> (ab+bc+ac)2=\(\dfrac{1}{4}\)
=> a2b2+b2c2+a2c2+2ab2c+2abc2+2a2bc=\(\dfrac{1}{4}\)
=> a2b2+b2c2+a2c2+2abc(a+b+c)=\(\dfrac{1}{4}\)
=> a2b2+b2c2+a2c2=\(\dfrac{1}{4}\)
Ta có: a2+b2+c2=1
=> (a2+b2+c2)2=1
=> a4+b4+c4+2a2b2+2b2c2+2a2c2=1
=> a4+b4+c4=4
+) Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow2\left(ab+bc+ca\right)=-2016\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-2013\right)^2\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=2013^2\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=2013^2\)( Do \(a+b+c=0\) )
+) Lại có : \(a^2+b^2+c^2=2016\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2016^2\)
\(\Rightarrow a^4+b^4+c^4=2016^2-2.2013^2=-4040082\)
Hay : \(A=-4040082\)
Vậy \(A=-4040082\) với a,b,c thỏa mãn đề.
Ta có
\(a+b+c=0\Leftrightarrow a=-b-c\)
\(\Leftrightarrow a^2=b^2+c^2+2bc\)
\(\Leftrightarrow a^2-b^2-c^2=2bc\)
\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2=4b^2c^2\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Ta lại có
\(a^2+b^2+c^2=2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=4\)
\(\Leftrightarrow a^4+b^4+c^4=2\)
Câu còn lại tương tự nhé
Ta có a + b+ c = 0 \(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Rightarrow1+2\left(ab+ac+bc\right)=0\)( vì \(a^2+b^2+c^2=1\))
\(\Rightarrow ab+bc+ac=-\frac{1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=\frac{1}{4}\)
Tới đây bạn phân tích nốt ra nhé :v
\(a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{1}{4}\left(a+b+c=0\right)\)(*)
Mặt khác : \(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c+2b^2c^2=1\)
\(\Rightarrow a^4+b^4+c^4+2\cdot\frac{1}{4}=1\)(theo *)
\(\Rightarrow a^4+b^4+c^4+\frac{1}{2}=1\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)
Ta có \(\left(a^2+b^2+c^2\right)^2=4\Rightarrow a^4+b^4+c^4=4-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Mà \(\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)=2\)
=> \(ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)
=> \(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\Rightarrow a^2b^2+b^2c^2+c^2a^2=1\)
=> \(a^4+b^4+c^4=4-2=2\)
^.^
Theo bài ra ta có : a2 + b2 + c2 = 2 .
Do đó : ( a2 + b2 + c2 )2 = 22 .
⇒ a4 + b4 + c4 = 4 .
Vậy a4 + b4 + c4 = 4 .