Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 117=a; 119=b
Theo đề, ta có:
\(B=\left(3+\dfrac{1}{a}\right)\cdot\dfrac{1}{b}-\dfrac{4}{a}\cdot\left(5+\dfrac{b-1}{b}\right)-\dfrac{5}{a\cdot b}+8:\dfrac{a}{3}\)
\(=\dfrac{3a+1}{a}\cdot\dfrac{1}{b}-\dfrac{4}{a}\cdot\dfrac{5b+b-1}{b}-\dfrac{5}{ab}+\dfrac{24}{a}\)
\(=\dfrac{3a+1-24b+4-5}{ab}+\dfrac{24}{a}=\dfrac{3a-24b+24b}{ab}=\dfrac{3a}{ab}=\dfrac{3}{b}=\dfrac{3}{119}\)
Câu 7:
x=2014 nên x-1=2013
\(A=x^{2014}-x^{2013}\left(x-1\right)-x^{2012}\left(x-1\right)-...-x\left(x-1\right)+1\)
\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}+x^{2012}-...-x^2+x+1\)
=x+1
=2014+1=2015
a: \(\dfrac{119}{117}=1+\dfrac{2}{117}\)
\(\dfrac{117}{115}=1+\dfrac{2}{115}\)
mà 2/117<2/115
nên \(\dfrac{119}{117}< \dfrac{117}{115}\)
hay \(-\dfrac{119}{117}>-\dfrac{117}{115}\)
b: \(\dfrac{-22}{35}=\dfrac{-22\cdot177}{35\cdot177}=-\dfrac{3894}{6195}\)
\(\dfrac{-103}{177}=\dfrac{-103\cdot35}{177\cdot35}=\dfrac{-3605}{6195}\)
mà -3894<-3605
nên -22/35<-103/177
Ta có:
\(\dfrac{-119}{117}=-1-\dfrac{2}{117}\)
\(\dfrac{-117}{115}=-1-\dfrac{2}{115}\)
Vì \(\dfrac{2}{117}\) < \(\dfrac{2}{115}\) nên \(\dfrac{-119}{117}\) > \(\dfrac{-117}{115}\)
Vậy, \(\dfrac{-119}{117}\) > \(\dfrac{-117}{115}\)
\(A=-5,13:\left(5\dfrac{5}{28}-1\dfrac{8}{9}.1,25+1\dfrac{16}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{17}{9}.\dfrac{125}{100}+\dfrac{79}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{17}{9}.\dfrac{5}{4}+\dfrac{79}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{85}{36}+\dfrac{79}{63}\right)\)
\(=-5,13:\dfrac{57}{14}=-5,13:\dfrac{15}{57}\)
\(=\dfrac{-71,82}{57}=1,26\)
Vậy \(A=1,26\)
\(B=\left(3\dfrac{1}{3}.1,9+19,5:4\dfrac{1}{3}\right).\left(\dfrac{62}{75}-\dfrac{4}{25}\right)\)
\(=\left(\dfrac{10}{3}.1,9+19,5:\dfrac{13}{3}\right).\left(\dfrac{62-12}{75}\right)\)
\(=\left(\dfrac{19}{3}+\dfrac{58,5}{13}\right).\dfrac{50}{75}\)
\(=\left(\dfrac{19}{3}+4,5\right).\dfrac{2}{3}\)
\(=\dfrac{32,5}{3}.\dfrac{2}{3}=\dfrac{65}{9}=7\dfrac{2}{9}\)
Vậy \(B=7\dfrac{2}{9}\)
1b. Ta thấy \(225-15^2=0\)
Mọi số nhân với 0 đều = 0
=> \(2017^0=1\)
2.
\(A=\dfrac{2.5^{22}-9.5^{21}}{25^{10}}:\dfrac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\dfrac{5^{21}\left(2.5-9\right)}{5^{20}}:\dfrac{5.7^{14}\left(3.7-19\right)}{7^{15}\left(7+3\right)}=5.1:\dfrac{5.7^{14}.2}{7^{15}.10}=5:\dfrac{1}{7}=35\)