Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x + y + 1 = 0 => x + y = -1
D = x2(x + y) - y2(x + y) + x2 - y2 + 2(x + y) + 3
D = (x2 - y2)(x + y) + (x2 - y2) + 2(x + y) + 3
D = (x + y)2(x - y) + (x + y)(x - y) + 2(x + y) + 3
D = (-1)2.(x - y) + (-1)(x - y) + 2.(-1) + 3
D = x - y - x + y - 2 + 3
D = 1
D=x2(x+y)-y2(x+y)+x2-y2+2(x+y)+3
=(x+y)(x2-y2)+(x2-y2)+2(x+y)+2+1
=(x2-y2)(x+y+1)+2(x+y+1)+1
thay x+y+1=0, ta được
D=(x2-y2).0+2.0+1=1
Vậy D=1
B = x2(x + y) - y2(x + y) + x2 - y2 + 2(x + y) + 3
B = [x2(x + y) + x2] - [y2(x + y) + y2] + 2(x + y) + 2 + 1
B = x2(x + y + 1) - y2(x + y + 1) + 2(x + y + 1) + 1
B= (x + y + 1)(x2 - y2 + 2) + 1
Thay x + y + 1 = 0 vào B, ta được :
B = 0.(x2 - y2 + 2) + 1 = 1
Vậy B = 1
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
\(\left\{\begin{matrix}x+y+1=0\\D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2+2\left(x+y\right)+3\end{matrix}\right.\)
Thay x+y=-1 vào D:
\(D=x^2\left(-1\right)-y^2\left(-1\right)+x^2+2\left(-1\right)+3\)
\(D=\left(-x^2+x^2\right)+y^2+\left(-2+3\right)=0+y^2-1\)
\(D=y^2-1\) xem lại đề đề kiểu này sau khi rút gọn D thường là h/s
Ta có: \(x+y+1=0\Rightarrow x+y=-1\)
Thay \(x+y=-1\) vào biểu thức D ta có:
\(D=-x^2+y^2+x^2-y^2-2+3\)
\(=\left(-x^2+x^2\right)+\left(y^2-y^2\right)-\left(2-3\right)\)
\(=0-\left(-1\right)\)
\(=1\)
Vậy D = 1