Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(1248:12-2,5\times4+6,03.\)
\(=104-10+6,03\)
\(=94+6,03=100,03\)
b/\(\left(\frac{2}{3}+\frac{5}{7}-\frac{1}{3}\right)\times\frac{7}{11}+3\frac{1}{3}.\)
\(=\left(\frac{29}{21}-\frac{1}{3}\right)\times\frac{7}{11}+3\frac{1}{3}\)
\(=\frac{22}{11}\times\frac{7}{11}+3\frac{1}{3}\)
\(=\frac{2}{3}+3\frac{1}{3}\)
\(=\frac{2}{3}+\frac{10}{3}\)
\(=\frac{12}{3}=4\)
a) \(M=\frac{2\times2}{1\times5}+\frac{2\times2}{5\times9}+\frac{2\times2}{9\times13}+...+\frac{2\times2}{45\times40}\)
\(M=\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{45\times49}\)
\(M=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{45}-\frac{1}{49}\)
\(M=1-\frac{1}{49}\)
\(M=\frac{48}{49}\)
b) \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+5+...+10}\)
= \(\frac{2}{2\times\left(1+2\right)}+\frac{2}{2\times\left(1+2+3\right)}+...+\frac{2}{2\times\left(1+2+3+...+10\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{110}\)
\(=\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{10\times11}\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(=2\times\frac{9}{22}\)
\(=\frac{9}{11}\)
Mình trả lời câu a nha M= 4/1*5+4/5*9+4/9*13+...+4/45*49 M=1-1/5+1/5-1/9+1/9-1/13+...+1/45-1/49 M=1-1/49=48/49
A=1+2+3+4+...+30=(30+1) x 30 : 2=465 chia 9 dư 6
vậy A chia 9 dư 6
\(A=\frac{1\times111+2\times110+3\times109+...+111\times1}{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+111\right)}\)
\(A=\frac{1\times111+2\times110+3\times109+...+111\times1}{\left(1+1+...+1\right)+\left(2+2+...+2\right)+...+111}\)(\(111\)số hạng \(1\), \(110\)số hạng \(2\),...)
\(A=\frac{1\times111+2\times110+3\times109+...+111\times1}{1\times111+2\times110+3\times109+...+111\times1}\)
\(A=1\)