Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x =99 => 100 = x + 1 thay vào ta có
\(x^5-\left(x+1\right)x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right)x-9=x^5-x^5-x^4+...+x^2+x-9\)
= x - 9
= 99 -9
= 90
Ta có:P=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xyP=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy
Đặt S=xy=x(201−x)S=xy=x(201−x)
Dễ có:1≤x≤2001≤x≤200
S=200−(x−1)(x−200)≥0⇒Smin=200S=200−(x−1)(x−200)≥0⇒Smin=200
Không mất tính TQ giả sử x≤y⇒x≤100x≤y⇒x≤100
S=100.101−(x−100)(x−101)≤100.101⇒Smax=100.101
Ta có x = 99
=> x + 1 = 100
Khi đó A = x5 - 100x4 + 100x3 - 100x2 + 100x - 9
= x5 - (x + 1)x4 + (x + 1)x3 - (x + 1)x2 + (x + 1)x - 9
= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 9
= x - 9
Thay x = 99 vào A
=> A = x - 9 = 99 - 9 = 90
Vậy A = 90
Ta có : \(x=99\Rightarrow100=x+1\)
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-9\)
\(=x-9\)hay \(99-9=90\)
Vậy \(A=90\)
a, \(x^3-3x^2+3x-1=\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1\right)=\left(x-1\right)^3\)
Thay x = 101 vào biểu thức trên ta được :
\(\left(101-1\right)^3=100.100.100=1000000\)
b, \(x^3+9x^2+27x\Leftrightarrow x\left(x^2+9x+27\right)\)
Thay x = 97 vào biểu thức trên ta được :
\(97\left[\left(97\right)^2+9.97+27\right]=97.10309=999973\)
bạn xem lại đề ý b nhé
a)\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(A=x^5-(99+1)x^4 +(99+1)x^3-(99+1)x^2+(99+1)x-9\)
Tại x=99 , ta có :
\(A=x^5 - (x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-9\)
\(A=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-9\)
\(A=x-9\)
Thay x = 99 vào biểu thức A ta có :
\(A=99-9=90\)
a, \(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)\(=\left(x^4-x^3+x^2-x\right)\left(x-99\right)+x-9\)
Thay x = 99
\(\Rightarrow A=90\)
Vậy A = 90 tại x = 99
b, \(B=x^7-26x^6+27x^5-47x^4-77x^3+50x^3+50x^2+x-24\)
\(=x^7-25x^6-x^6+25x^5+2x^5-50x^4+3x^4-75x^3-2x^3+50x^2+x-24\)
\(=x^6\left(x-25\right)-x^5\left(x-25\right)+2x^4\left(x-25\right)+3x^3\left(x-25\right)-2x^2\left(x-25\right)+x-24\)
\(=\left(x^6-x^5+2x^4+3x^3-2x^2\right)\left(x-25\right)+x-24\)
Thay x = 25
\(\Rightarrow B=1\)
Vậy B = 1 tại x = 25
a) \(x^3-3x^2-3x-1\)
\(=\left(x-1\right)^3\)
Với x=101 thì giá trị biểu thức là:
\(\left(101-1\right)^3\)
\(=100^3\)
\(=1000000\)
b) \(x^3+9x^2+27x+27\)
\(=\left(x+3\right)^3\)
Với x=97 thì giá trị biểu thức là:
\(\left(97+3\right)^3\)
\(=100^3\)
\(=1000000\)
x3 - 100x2 - 101x + 1 tại x = 101
\(x^3-\left(101x-100x^2+1\right)x=101\)
\(x^2-\left(-9899x^2+1\right)x=101\)
\(x^2--9898x=101\)
\(x=101^2+9898\)
\(x=303\)
\(x^3-100x^2-101x+1\)
\(=x^3-101x^2+x^2-101x+1\)
\(=x^2\left(x-101\right)+x\left(x-101\right)+1\)
\(=101^2\left(101-101\right)+101\left(101-101\right)+1\)
\(=1\)