Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+....+\left(1-\frac{1}{2016.2017}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\right)\)
\(=2016-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=2016-\left(1-\frac{1}{2017}\right)\)
\(=2016-\frac{2016}{2017}=\frac{4064256}{2017}\)
Vậy giá trị biểu thức là \(\frac{4064256}{2017}\)
\(\frac{5}{6}+\frac{4}{5}+\frac{2}{5}\)
\(=\frac{49}{30}+\frac{2}{5}\)
\(=\frac{61}{30}\)
\(\frac{5}{6}+\frac{4}{5}+\frac{2}{5}=\frac{5}{6}+\frac{6}{5}=\frac{61}{30}\)
\(\frac{72.62.14}{36.88.21}=\frac{9.8.2.31.7.2}{9.2.2.8.11.7.3}=\frac{31}{11.3}=\frac{31}{33}\)
ta có
A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{19.21}\)
\(=2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{21}\right)\)
=\(\frac{4}{7}\)
\(A=\frac{2020}{2019}-\frac{2019}{2018}+\frac{1}{2019\times2018}\)
\(=\frac{2020\times2018}{2019\times2018}-\frac{2019\times2019}{2019\times2018}+\frac{1}{2019\times2018}\)
\(=\frac{2020\times2018-2019\times2019+1}{2019\times2018}\)
\(=\frac{\left(2019+1\right)\times\left(2019-1\right)-2019\times2019+1}{2019\times2018}\)
\(=\frac{2019\times2019-2019+2019-1-2019\times2019+1}{2019\times2018}\)
\(=\frac{2019\times2019-1-\left(2019\times2019-1\right)}{2019\times2018}\)
\(=\frac{0}{2019\times2018}\)
\(=0\)
Vậy A = 0
ta có
A=2020*2018/2019*2018-2019*2019/2018*2019+1/2018*2019
=>A*(2018*2019)=2020*2018-2019*2019+1
=>A*(2018*2019)=(2019+1)*2018-(2018+1)*2019+1
=>A*(2018*2019)=(2019*2018+2018)-(2018*2019+2019)+1
=>A*(2018*2019)=2019*2018+2018-2018*2019-2019+1
=>A*(2018*2019)=2018-2019+1
=>A*(2018*2019)=2018+1-2019
=>A*(2018*2019)=0
=>A=0/(2018*2019)
=>A=0
2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43
= 1/3 - 1/43
= 40/129
ỦNG HỘ NHA
\(\frac{7}{5}+\frac{7}{8}-\frac{1}{8}\times\frac{10}{8}\)
\(=\frac{7\times8+7\times5}{5\times8}-\frac{10}{8}\)
\(=\frac{7\times13}{5\times8}-\frac{50}{40}\)
\(=\frac{91}{40}-\frac{50}{40}=\frac{41}{40}\)
\(\frac{7}{5}+\frac{7}{8}-\frac{1}{8}\times\frac{10}{8}\)
\(=\frac{7}{5}+\frac{7}{8}-\frac{5}{32}\)
\(=\frac{339}{160}\)
\(\frac{2016,2017-198}{2017.2015+1819}=\frac{\left(2015+1\right).2017-198}{2017.2015+1819}\)
\(=\frac{2015.2017+2017-198}{2017.2015+1819}\)
\(=\frac{2015.2017+1819}{2017.2015+1819}\)
\(=1\)
Nhớ k cho mình nha
\(\frac{2016.2017-198}{2017.2015+1819}=\frac{\left(2015+1\right)2017-198}{2017.2015+1819}=\frac{2015.2017+2017-198}{2017.2015+1819}=\frac{2017.2015+1819}{2017.2015+1819}=1\)