Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(0+1\right):\left(\dfrac{2}{3}+\dfrac{7}{6}-\dfrac{1}{6}\right)=1:\dfrac{5}{3}=\dfrac{3}{5}\)
b: \(B=\left[0.8\cdot15\right]\cdot\left[1.25\cdot\dfrac{19}{3}\right]+31.64=15\cdot\dfrac{95}{12}+31.64=150.39\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}\)
\(A=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2014\right).2014:2}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2014.2015}\)
\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(A=2.\frac{1}{2}-2.\frac{1}{2015}\)
\(A=1-\frac{2}{2015}=\frac{2013}{2015}\)
Ta có : \(1+2=\frac{2.3}{2}\) , \(1+2+3=\frac{3.4}{2}\) ,
\(1+2+3+4=\frac{4.5}{2}\) , ......... , \(1+2+3+4+....+2014=\frac{2014.2015}{2}\)
Suy ra : \(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2014.2015}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(2\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}\)
\(A=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2014\right).2014:2}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2014.2015}\)
\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(A=2.\frac{1}{2}-2.\frac{1}{2015}\)
\(A=1-\frac{2}{2015}\)
\(A=\frac{2013}{2015}\)
\(2014:\left(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1\frac{2}{5}-\frac{7}{9}+\frac{7}{11}}\cdot\frac{1\frac{1}{6}+0,875-0,7}{\frac{1}{3}+0,25-\frac{1}{5}}\right)\)
\(=2014:\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}\cdot\frac{\frac{7}{6}+\frac{7}{8}-\frac{7}{10}}{\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}\right)\)
\(=2014:\left(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}\cdot\frac{\frac{7}{6}+\frac{7}{8}-\frac{7}{10}}{\frac{2}{6}+\frac{2}{8}-\frac{2}{10}}\right)\)
\(=2014:\left(\frac{2}{7}\cdot\frac{7\left(\frac{1}{6}+\frac{1}{8}-\frac{1}{10}\right)}{2\left(\frac{1}{6}+\frac{1}{8}-\frac{1}{10}\right)}\right)\)
\(=2014:\left(\frac{2}{7}\cdot\frac{7}{2}\right)=2014\)
a: \(A=\dfrac{1}{9}:\dfrac{1}{9}:\left(\dfrac{10+7}{15}:\dfrac{12-5}{30}\right)\)
\(=1:\left(\dfrac{17}{15}\cdot\dfrac{30}{7}\right)=1:\dfrac{34}{7}=\dfrac{7}{34}\)
b: \(=\left(5.6+0.64\right)\cdot1.25\cdot\dfrac{19}{3}+31.64\)
\(=\dfrac{39}{5}\cdot\dfrac{19}{3}+\dfrac{791}{25}=\dfrac{2026}{25}\)
a) \(\left(-\frac{3}{4}\right)^2:\left(\frac{5}{4}\right)^2+14,7-1\frac{9}{25}\)
\(=\left[\left(-\frac{3}{4}\right):\frac{5}{4}\right]^2+\frac{147}{10}-\frac{34}{25}\)
\(=\left[\left(-\frac{3}{4}\right)\cdot\frac{4}{5}\right]^2+\frac{147}{10}-\frac{34}{25}\)
\(=\left(-\frac{3}{5}\right)^2+\frac{147}{10}-\frac{34}{25}=\frac{9}{25}+\frac{147}{10}-\frac{34}{25}=\left(\frac{9}{25}-\frac{34}{25}\right)+\frac{147}{10}=-1+\frac{147}{10}=\frac{137}{10}\)
b) \(\left(2\frac{1}{3}-1,5\right):\left(-6\frac{1}{6}+5\frac{1}{2}\right)+2,75\)
\(=\left(\frac{7}{3}-\frac{3}{2}\right):\left(-\frac{37}{6}+\frac{11}{2}\right)+\frac{11}{4}\)
\(=\frac{5}{6}:\left(-\frac{2}{3}\right)+\frac{11}{4}=\frac{5}{6}\cdot\left(-\frac{3}{2}\right)+\frac{11}{4}=-\frac{5}{4}+\frac{11}{4}=\frac{3}{2}\)
\(\approx0,4\)