K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A=y(x-4)-5(x-4)

=(x-4)(y-5)

Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5

b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)

=0,2*10=2

d: Khi x=5,75 và y=4,25 thì

D=5,75^3-5,75^2*4,25+4,25^3

=8087/64

30 tháng 7 2023

bn làm ơn giải chi tiết đi vs ạ

a: A=yx-4y-5x+20

=y(x-4)-5(x-4)

=(x-4)(y-5)

Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5

b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)

=0,2*10=2

d: Khi x=5,75 và y=4,25 thì

D=5,75^3-5,75^2*4,25+4,25^3

=8087/64

c: \(D=xyz-xy-yz-xz+x+y+z-1\)

=xy(z-1)-yz+y-xz+z+x-1

=xy(z-1)-y(z-1)-z(x-1)+(x-1)

=(z-1)(xy-y)-(x-1)(z-1)

=(z-1)(xy-y-1)

=(11-1)(9*10-10-1)

=10*79=790

31 tháng 8 2017

C=720

2 tháng 8 2020

a/ \(A=xy-4y-5x+20\)

\(=x\left(y-5\right)-4\left(y-5\right)\)

\(=\left(x-4\right)\left(y-5\right)\)

Thay \(x=14;y=5,5\) vào biểu thức A ta có :

\(A=\left(14-4\right)\left(5,5-5\right)\)

\(=10.0,5=5\)

Vậy...

b/ \(B=xyz-\left(xy+yz+zx\right)+x+y+z-1\)

\(=xyz-xy-yz-zx+x+y+z-1\)

\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(zx-x\right)+\left(z-1\right)\)

\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)

\(=\left(z-1\right)\left(xy-y-x+1\right)\)

\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

Thay \(x=9,y=10,z=11\) vào biểu thức B ta có :

\(B=\left(9-1\right)\left(10-1\right)\left(11-1\right)\)

\(=720\)

Vậy....

c/ \(C=x^3-x^2y-xy^2+y^3\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

Thay \(x=5,75,y=4,25\) vào biểu thức C ta có :

\(C=\left(5,75-5,25\right)^2\left(5,75+5,25\right)=11,25\)

Vậy..

7 tháng 9 2017

C=720

D=22,5

Mấy cái bt này ko thu gọn được nữa nên ta chỉ cần thay vào thôi

\(C=xyz+\left(xy+yz+xz\right)+x+y+z-1\)

Ta có ĐT tương đương

\(C=xyz+\left(xy+yz+xz\right)+x+y+z-1=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

Thay \(x=9\) ; \(y=10\) ; \(z=11\) vào BT có :

\(\left(9-1\right)\left(10-1\right)\left(11-1\right)=720\)

Vậy .........

17 tháng 7 2018

C = xyz - xy - yz - xz + x + y +z- 1

= xy(z-1) - y(z-1) - x(z-1) + 1(z-1)

(xy-y-x+1)(z-1)

29 tháng 12 2018

Ta có: A= \(\dfrac{xy+2y+1}{xy+x+y+1}+\dfrac{yz+2z+1}{yz+y+z+1}\) +\(\dfrac{zx+2x+1}{zx+z+x+1}\)

=\(\dfrac{xy+2y+1}{\left(x+1\right)\left(y+1\right)}+\dfrac{yz+2z+1}{\left(y+1\right)\left(z+1\right)}\) +\(\dfrac{zx+2x+1}{\left(x+1\right)\left(z+1\right)}\)

=\(\dfrac{\left(xy+2y+1\right)\left(z+1\right)}{\left(z+1\right)\left(y+1\right)\left(x+1\right)}\)+\(\dfrac{\left(yz+2z+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)+\(\dfrac{\left(y+1\right)\left(zx+2x+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

Đặt B =(z+1)(xy+2y+1)+(yz+2z+1)(x+1)+(y+1)(zx+2x+1)

=>B= xyz+2yz+z+xy+2y+1+xyz+2zx+x+yz+2z+1+xyz+2xy+y+xz+2x+1 = 3xyz+3yz+3z+3xy+3y+3+3xz+3x = 3(xyz+yz +x+1+xy+y+xz+z) =3[yz(x+1)+(x+1)+y(x+1)+z(x+1)] =3(x+1)(yz+y+z+1)=3(x+1)(y+1)(1+z)

=> A=\(\dfrac{B}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)=\(\dfrac{3\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)=3

Vậy A=3 với mọi x,y,z

20 tháng 12 2020

a/ \(A=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\)

Thay x = 15 vào bt A ta có

A = 9 . 15 = 135

b/ \(B=5x^2-20xy-4y^2+2xy=5x^2-4y^2\)

Thay x = -1/5 ; y = - 1/2 vào bt B ta có

\(B=5.\dfrac{1}{25}-4.\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

c/ \(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(=9x^2y^2-xy^3-8x^3\)

Thay x = 1/2 ; y = 2 vào bt C ta có

\(C=9.4.\dfrac{1}{4}-\dfrac{1}{2}.8-8.\dfrac{1}{8}=9-4-1=4\)

d/ \(D=6x^2+10x-3x-5+6x^2-3x+8x-2\)

\(=12x^2+12x-3\)

\(\left|x\right|=2\Rightarrow x=\pm2\)

Thay x = 2 vào bt D có

\(D=12.4+12.2-3=69\)

Thay x = - 2 vào bt D ta có

\(D=12.4-12.2-3=21\)