K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(A=\log_{\frac{\sqrt{b}}{a}}\frac{\sqrt[3]{b}}{\sqrt{a}}=\log_{\frac{\sqrt{b}}{a}}b^{\frac{1}{3}}-\log_{\frac{\sqrt{b}}{a}}a^{\frac{1}{3}}=\frac{1}{3\log_b\frac{\sqrt{b}}{a}}-\frac{1}{2\log_a\frac{\sqrt{b}}{a}}\)

    \(=\frac{1}{3\left(\frac{1}{2}-\log_ba\right)}-\frac{1}{2\left(\frac{1}{2}\log_ab-1\right)}\)

    \(=\frac{1}{3\left(\frac{1}{2}-\log_ba\right)}-\frac{1}{\log_ab-2}=\frac{a\log_ab}{3\left(\log_ab-2\right)}-\frac{1}{\log_ab-2}\)

   \(=\frac{2\sqrt{3}-3}{3\left(\sqrt{3}-2\right)}=-\frac{\sqrt{3}}{3}\)

26 tháng 3 2016

Chọn 2 làm cơ số, ta có :

\(A=\log_616=\frac{\log_216}{\log_26}=\frac{4}{1=\log_23}\)

Mặt khác :

\(x=\log_{12}27=\frac{\log_227}{\log_212}=\frac{3\log_23}{2+\log_23}\)

Do đó : \(\log_23=\frac{2x}{3-x}\) suy ra \(A=\frac{4\left(3-x\right)}{3+x}\)

b) Ta có :

\(B=\frac{lg30}{lg125}=\frac{lg10+lg3}{3lg\frac{10}{2}}=\frac{1+lg3}{3\left(1-lg2\right)}=\frac{1+a}{3\left(1-b\right)}\)

c) Ta có :

\(C=\log_65+\log_67=\frac{1}{\frac{1}{\log_25}+\frac{1}{\log_35}}+\frac{1}{\frac{1}{\log_27}+\frac{1}{\log_37}}\)

Ta tính \(\log_25,\log_35,\log_27,\log_37\) theo a, b, c .

Từ : \(a=\log_{27}5=\log_{3^3}5=\frac{1}{3}\log_35\)

Suy ra \(\log_35=3a\) do đó :

                                     \(\log_25=\log_23.\log35=3ac\)

Mặt khác : \(b=\log_87=\log_{2^3}7=\frac{1}{3}\log_27\) nên \(\log_27=3b\)

Do đó : \(\log_37=\frac{\log_27}{\log_23}=\frac{3b}{c}\)

Vậy : \(C=\frac{1}{\frac{1}{3ac}+\frac{1}{3a}}+\frac{1}{\frac{1}{3b}+\frac{c}{3b}}=\frac{3\left(ac+b\right)}{1+c}\)

d) Điều kiện : \(a>0;a\ne0;b>0\)

Từ giả thiết \(\log_ab=\sqrt{3}\) suy ra \(b=a^{\sqrt{3}}\). Do đó :

\(\frac{\sqrt{b}}{a}=a^{\frac{\sqrt{3}}{2}-1};\frac{\sqrt[3]{b}}{\sqrt{a}}=a^{\frac{\sqrt{3}}{3}-\frac{1}{2}}=a^{\frac{\sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-1\right)}\)

Từ đó ta tính được :

\(A=\log_{a^{\alpha}}a^{\frac{-\sqrt{3}}{3}\alpha}=\log_{a^{\alpha}}\left(a^{\alpha}\right)^{\frac{-\sqrt{3}}{3}}=\frac{-\sqrt{3}}{3}\) với \(\alpha=\frac{\sqrt{3}}{2}-1\)

 

 

26 tháng 3 2016

a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)

b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)

c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)

d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)

                   \(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)

                   \(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)

4 tháng 5 2016

\(E=16\left[\log_{3^{-2}}3^{\frac{3}{2}}\right]^2+23\log_{2^{\frac{9}{2}}}2^{\frac{5}{2}}-12\log_55^{-3}=16\left(-\frac{3}{4}\right)^2+9\frac{5}{9}-12\left(-3\right)=50\)

11 tháng 5 2016

Cho \(\log_ab=3;\log_ac=-2\)

1. Với \(x=a^3b^2\sqrt{c}\Rightarrow\log_ax=\log_a\left(a^3b^2\sqrt{c}\right)=\log_aa^3+\log_ab^2+\log_ac^{\frac{1}{2}}\)

             \(=3+2.3+\frac{1}{2}\left(-2\right)=8\)

2. Với \(x=\frac{a^4\sqrt[3]{b}}{c^3}\) \(\Rightarrow\log_a\frac{a^4\sqrt[3]{b}}{c^2}=\log_aa^4+\log_ab^{\frac{1}{3}}+\log_ac^3\)

                                              \(=4+\frac{1}{3}\log_ab+3\log_ac=4+\frac{1}{3}.3+3\left(-2\right)=-1\)

3. Với \(x=\log_a\frac{a^2\sqrt[3]{b}c}{\sqrt[3]{a\sqrt{c}}b^3}\Rightarrow\log_a\frac{a^2b^{\frac{1}{3}}c}{a^{\frac{1}{3}}b^3c^{\frac{1}{6}}}=\log_a\frac{a^{\frac{5}{3}}c^{\frac{5}{6}}}{b^{\frac{8}{3}}}=\log_aa^{\frac{5}{3}}-\log_ab^{\frac{8}{3}}+\log_ac^{\frac{3}{2}}\)

                                                           \(=\frac{5}{3}-\frac{8}{3}\log_ab+\frac{5}{6}\log_ac=\frac{5}{3}-\frac{8}{3}3+\frac{5}{6}\left(-2\right)=-8\)

                      

    

26 tháng 3 2016

a) \(A=\frac{a^{\frac{5}{2}}\left(a^{\frac{1}{2}}-a^{\frac{-3}{2}}\right)}{a^{\frac{1}{2}}\left(a^{\frac{-1}{2}}-a^{\frac{3}{2}}\right)}=\frac{a^3-a}{1-a^2}=-a\)

Do đó : \(A=-\left(\pi-3\sqrt{2}\right)=3\sqrt{2}-\pi\)

b) Rút gọn B ta có :

\(B=\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)\left[\left(a^{\frac{1}{3}}\right)^2+\left(b^{\frac{1}{3}}\right)^2\right]=\left(a^{\frac{1}{3}}\right)^3+\left(b^{\frac{1}{3}}\right)^3=a+b\)

Do đó :

\(B=\left(7-\sqrt{2}\right)+\left(\sqrt{2}+3\right)=10\)

12 tháng 5 2016

Ta có \(a=\log_{\sqrt{2}}\left(\frac{1}{\sqrt[3]{5}}\right)=\log_{2^{\frac{1}{2}}}5^{-\frac{1}{3}}=-\frac{2}{3}\log_25\)

\(\Rightarrow\log_25=-\frac{3a}{2}\)

\(\Rightarrow C=\log40=\frac{\log_240}{\log_210}=\frac{\log_2\left(2^3.5\right)}{\log_2\left(2.5\right)}=\frac{3+\log_25}{1+\log_25}=\frac{6-3a}{2-3a}\)

11 tháng 5 2016

\(A=\log_3\left(\log_{2\sqrt{2}}\sqrt[3]{\sqrt{2}}\right)=\log_3\left(\log_{2^{\frac{3}{2}}}2^{\frac{1}{6}}\right)=\log_3\left(\frac{1}{6}.\frac{2}{3}\right)=\log_33^{-2}=-2\)

4 tháng 5 2016

\(D=\log_{5^{-1}}\left(5^2\right)-3\log_{3^2}\left(3^{-1}\right)+4.\log_{2^{\frac{3}{2}}}2^6=-2+\frac{3}{2}+16=\frac{31}{2}\)

5 tháng 8 2019
https://i.imgur.com/Al7pgHN.jpg
5 tháng 8 2019
https://i.imgur.com/h1MfS1y.jpg