Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=6/4.7+6/7.10+6/10.13+...+6/73.76
\(=2.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{76}\right)=2.\frac{9}{38}=\frac{9}{19}\)
a) 1x( 1+3) ; 4x( 4+3) ; 7 x ( 7+3) ; 10 x ( 10 +3) ; ,,,,,,,,
b)1720
st1 = 1.4 = [ 3.(1-1) + 1].[3.(1-1) + 4]
st2 = 4.7 = [3.(2-1) + 1].[3.(2-1) + 4]
st3 = 7.10 = [3.(3-1) + 1].[3.(3-1) + 4]
..........................................................
stn = [3.(n - 1) + 1].(3.(n - 1) + 4]
stn = (3n - 2).(3n + 1)
số hạng thứ 15 của dãy số trên là:
(3.15 - 2).(3.15 + 1) = 43.46 = 1978
\(\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+\frac{2}{10\cdot13}+\frac{2}{13\cdot16}\)
\(=2\left(\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+\frac{1}{13\cdot16}\right)\)
\(=2\left[\frac{1}{3}\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\right)\right]\)
\(=2\left[\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\right]\)
\(=2\left[\frac{1}{3}\left(\frac{1}{4}-\frac{1}{16}\right)\right]\)
\(=2\left[\frac{1}{3}\cdot\frac{3}{16}\right]\)
\(=2\cdot\frac{1}{16}\)
\(=\frac{2}{16}=\frac{1}{8}\)
Ta có :
\(\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}\)
\(=\)\(2\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}\right)\)
\(=\)\(\frac{2}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)
\(=\)\(\frac{2}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=\)\(\frac{2}{3}\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(=\)\(\frac{2}{3}.\frac{3}{16}\)
\(=\)\(\frac{1}{8}\)
Chúc bạn học tốt ~
3/1.4+3/4.7+3/7.10+3/10.13
=1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13
=1 - 1/13
=12/13
\(=>C=\frac{3}{4}-\frac{3}{7}+\frac{3}{7}-\frac{3}{10}+....+\frac{3}{73}-\frac{3}{76}\)
\(=>C=\frac{3}{4}-\frac{3}{76}\)
\(=>C=\frac{54}{76}\)
\(=>C=\frac{27}{38}\)
\(C=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{73.76}\)
=> Cộng vế với vế , ta được :
\(C=\frac{3}{3}\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+....+\frac{1}{73.76}\right)\)
\(\Rightarrow C=1\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{73}-\frac{1}{76}\right)\)
\(\Rightarrow C=1\left(\frac{1}{4}-\frac{1}{76}\right)\)
\(\Rightarrow C=1\left(\frac{19}{76}-\frac{1}{76}\right)=1\frac{18}{76}\)
3/1.4 + 3/4.7 + .. +3/13.16
= 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16
= 1/1 - 1/16
= 15/16
Ta thấy: 1/1-1/4 = 3/4 = 3.(1/1.4)
1/4-1/7 = 3/28 = 3.(1/4.7)
A = 3(1/1-1/4+1/4-1/7+...+1/97-1/100)
A = 3.(1-1/100)
A = 3.(99/100)
A = 297/100
\(A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\frac{99}{100}\)
\(A=\frac{33}{100}\)
A=4.7+7.10+10.13+...+205.208
A.9=4.7.9+7.10.9+10.13.9+...+205.208.9
A.9=4.7.(10-1)+7.10.(13-4)+...+205.208.(211-202)
A.9=4.7.10-1.4.7+7.10.13-4.7.10+...+205.208.211-202.205.208
A.9=-1.4.7+205.208.211
A.9=8997012
A=8997012:9=999668
tick cho mình nha