Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
x-y=9=>x=y+9,thay x=y+9 vào B ta có:
\(B=\frac{4\left(y+9\right)-9}{3\left(y+9\right)+y}-\frac{4y+9}{3y+\left(y+9\right)}\)
\(=\frac{4y+36-9}{3y+27+y}-\frac{4y+9}{4y+9}=\frac{4y+27}{4y+27}-\frac{4y+9}{4y+9}=1-1=0\)
Vậy B=0
\(B=\frac{4x-9}{3x+y}-\frac{4y+9}{3y+x}\)
\(\Rightarrow B=\frac{4x-\left(x-y\right)}{3x+y}-\frac{4y+x-y}{3y+x}\)
\(\Rightarrow B=\frac{4x-x+y}{3x+y}-\frac{4y+x-y}{3y+x}\)
\(\Rightarrow B=\frac{3x+y}{3x+y}-\frac{3y+x}{3y+x}=1-1=0\)
Thay 9 = x - y vào biểu thức B , ta được :
\(B=\frac{4x-\left(x-y\right)}{3x+y}-\frac{4y+\left(x-y\right)}{3y+x}=\frac{3x+y}{3x+y}-\frac{3y+x}{3y+x}=1-1=0\)
Vậy ...
\(a,x=-2y\)
Thay vào M ta được \(M=\frac{-6y-4y}{3y+8y}=-\frac{10y}{11y}=-\frac{10}{11}\)
b,\(\frac{x}{3}=\frac{y}{12}=k\Rightarrow x=3k;y=12k\)
Thay vào M ta được \(M=\frac{9k-24k}{36k-12k}=\frac{-15k}{24k}=-\frac{15}{24}\)
c,\(3x+y=0\Rightarrow y=-3x\)
Thay vào M ta được \(M=\frac{3x+12x}{-9x-4x}=\frac{15x}{-13x}=-\frac{15}{13}\)