K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

Bài 2:

\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)

\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+..+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)

\(=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)

\(=\frac{1-\sqrt{2005}}{-4}\)

\(=\frac{\sqrt{2005}-1}{4}\)

14 tháng 9 2023

Trước tiên ta cần chứng minh : \(1^2+n^2+\dfrac{n^2}{\left(n+1\right)^2}\text{=}\left(n+1-\dfrac{n}{n+1}\right)^2\)

\(\Leftrightarrow2.\left(\dfrac{n\left(n+1\right)}{n+1}-\dfrac{n}{n+1}-\dfrac{n^2}{n+1}\right)\text{=}0\)

\(\Leftrightarrow2.0\text{=}0\left(LĐ\right)\)

Ta có : \(E\text{=}\sqrt{1+2007^2+\dfrac{2007^2}{2008^2}}+\dfrac{2007}{2008}\)

Với bổ đề trên thì :

\(E\text{=}\sqrt{\left(2007+1-\dfrac{2007}{2008}\right)^2}+\dfrac{2007}{2008}\)

\(E\text{=}2008+\dfrac{2007}{2008}-\dfrac{2007}{2008}\)

\(E\text{=}2008\)

28 tháng 9 2017

Ta có:\(\left(\sqrt[]{x^2+2007}+x^{ }\right)\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}+y\right)\left(\sqrt{y^2+2007}-y\right)=2007\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)\)

\(\Rightarrow2007^2=2007\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)\)

\(\Rightarrow\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)=2007\)

\(\Rightarrow xy-x\sqrt{y^2+2007}-y\sqrt{x^2+2007}+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)(1)

\(\left(\sqrt[]{x^2+2007}+x^{ }\right)\left(\sqrt{y^2+2007}+y\right)=xy+x\sqrt{y^2+2007}+y\sqrt{x^2+2007}+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)(2)

cộng (1) và (2)

\(\Rightarrow xy+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)

\(\Leftrightarrow\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007-xy\)

\(\Rightarrow x^2y^2+2007\left(x^2+y^2\right)+2007^2=2007^2-2.2007xy+x^2y^2\)

\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow M=0\)

29 tháng 9 2017

thank you Bertram Đức Anh

24 tháng 9 2020

a/

(căn bậc hai(3) - căn bậc hai(5) + căn bậc hai(3) + căn bậc hai(5)*3 -5 +3 +5)*2

Kết quả 1: Tính

2*(2*căn bậc hai(5)+2*căn bậc hai(3)+3) b/