Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xài trò này chắc Oke :))
a)
Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p
\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)
\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)
\(=1267\)
b)
\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)
Ta tính \(x^5+y^5\) theo S và P
Dễ có:
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)
\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)
\(=S^5-5S^3P+2SP^2-S^2P\)
Chắc không nhầm lẫn gì ở việc tính toán =)))
Ta có x3 + y3
= (x + y)(x2 - xy + y2)
= (x + y)(x2 + 2xy + y2) - 3xy(x + y)
= (x + y)3 - 6xy
= 23 - 6xy
= 8 - 6xy
Lại có x + y = 2
=> (x + y)2 = 4
=> x2 + y2 + 2xy = 4
=> 2xy = -6
=> xy = -3
Khi đó x3 - y3 = 8 + 6.3 = 26
b) a + b = 7
=> a = 7 - b
Khi đó ab = 12
<=> (7 - b).b = 12
=> 7b - b2 = 12
=> 7b - b2 - 12 = 0
=> -(b2 - 7b + 12) = 0
=> b2 - 4b - 3b + 12 = 0
=> b(b - 4) - 3(b - 4) = 0
=> (b - 3)(b - 4) = 0
=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)
Khi b = 3 => a = 4
Khi b = 4 => a = 3
+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1
+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1
c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)
= (a - b)(a2 - 2ab + b2) + 3ab(a - b)
= (a - b)3 + 3ab(a - b)
= 27 + 9ab
Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)
Khi đó C = 27 + 9.6.3 = 27 + 162 = 189
A = a2 + b2 = a2 + 2ab + b2 - 2ab = ( a + b )2 - 2ab = 52 - 2.6 = 25 - 12 = 13
B = a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = ( a + b )3 - 3ab( a + b ) = 53 - 3.6.5 = 125 - 90 = 35
C = a4 + b4 = a4 + 2a2b2 + b4 - 2a2b2 = ( a2 + b2 )2 - 2a2b2 = [ ( a + b )2 - 2ab ]2 - 2( ab )2
= ( 52 - 2.6 )2 - 2.62
= ( 25 - 12 )2 - 2.36
= 132 - 72
= 169 - 72 = 97
gọi a+b+c=0 là 1
a^2+b^2+c^2 la 2
Bình phương 2 ve cua 1 ta có:
a^2+b^2+c^2+(ab+ac+bc)=0
2+2.(ab+bc+ca)=0
ab+bc+ca= -1 goi day la 3
Bình phương 2 vế của 3 ta có
a^4+b^4+c^4 +2.(a^2.b^2+b^2.c^2+a^2.c^2)=1
a^4+b^4+c^4 +2.4=1
a^4+b^4+c^4=-7
gọi a+b+c=0 là 1
a^2+b^2+c^2 la 2
Bình phương 2 ve cua 1 ta có:
a^2+b^2+c^2+﴾ab+ac+bc﴿=0
2+2.﴾ab+bc+ca﴿=0
ab+bc+ca= ‐1 goi day la 3
Bình phương 2 vế của 3 ta có
a^4+b^4+c^4 +2.﴾a^2.b^2+b^2.c^2+a^2.c^2﴿=1
a^4+b^4+c^4 +2.4=1
a^4+b^4+c^4=‐7
c) \(C=\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left[\left(a+b\right)^2-ab\right]=3\left(9^2-ab\right)\)
\(\left(a+b\right)^2=81\Leftrightarrow a^2+2ab+b^2=81\Leftrightarrow a^2+b^2=81-2ab\)
\(\left(a-b\right)^2=9\Leftrightarrow a^2+b^2=9+2ab\)
=> \(81-2ab=9+2ab\Rightarrow4ab=72\Leftrightarrow ab=18\)
\(\Leftrightarrow C=3\left(81-18\right)=189\)
\(D=\left(x^2+2xy+y^2\right)-4\left(x+y+1\right)\)
\(D=\left(x+y\right)^2-4.4=3^2-16=9-16=-7\)
lấy 2 giả kiện cộng lại ta được 2a=12=>a=6
=>b=1
=>a^2+b^2=36+1=37
(a + b) + (a - b) = 7 + 5 <=> 2a = 12 => a = 6 => b = 7 - 6 = 1 => a2 + b2 = 62 + 12 = 37