\(\frac{x-y}{x+y}\)  .biết \(x^2-2y^2=xy\)    ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

\(x^2-2y^2=xy\)

\(\Leftrightarrow\)\(x^2-2y^2-xy=0\)

\(\Leftrightarrow\)\(x^2-2.\frac{1}{2}xy+\frac{1}{4}y^2-\frac{1}{4}y^2-2y^2=0\)

\(\Leftrightarrow\)\(\left(x-\frac{1}{2}y\right)^2-\frac{9}{4}y^2=0\)

\(\Leftrightarrow\)\(\left(x-\frac{1}{2}y+\frac{3}{2}y\right)\left(x-\frac{1}{2}y-\frac{3}{2}y\right)=0\)

\(\Leftrightarrow\)\(\left(x+y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\)\(x+y=0\)HOẶC \(x-2y=0\)

* Tại x + y = 0

=> x = -y

=> A = \(\frac{x+x}{x-x}\)(Không xác định dc do mẫu =0)

* Tại x - 2y = 0

=> x = 2y

=> A = \(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Vậy....

đăng lên làm j z

2 tháng 9 2017

X=2007 đúng 100%

10 tháng 1 2021

Ta có: \(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy+2y^2=0\)\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Vì \(x+y\ne0\Rightarrow x=2y\)

=> \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

13 tháng 7 2018

\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)

\(\Rightarrow A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

7 tháng 12 2018

x2  - 2y2 = xy <=> x2 - xy - 2y2 = 0 <=> x2 + xy - 2xy - 2y2 = 0 <=> x (  x + y ) - 2y 

( x + y ) = 0 <=> ( x - 2y ) ( x + y ) = 0

mà x + y \(\ne\) 0 => x - 2y = 0 => x = 2y

=> A = \(\frac{2y-y}{2y+y}\) = \(\frac{y}{3y}\) = \(\frac{1}{3}\)

23 tháng 2 2020

a) Rút gọn :

Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2\left(x+y\right)^2-2x^2y-x^2\left(x^2-y^2\right)}{\left(x^2-y^2\right)^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2\left(x^2+2xy+y^2\right)-2x^2y-x^4+x^2y^2}{\left(x^2-y^2\right)^2}\right]\)

...

23 tháng 2 2020

 ミ★ Đạt ★彡: sao bạn rút gọn gì vậy @@?

11 tháng 2 2018

Ta có:    \(x^2-2y^2=xy\)

\(\Leftrightarrow\)\(x^2-2y^2-xy=0\)

\(\Leftrightarrow\)\(\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)

\(\Leftrightarrow\)\(\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\)\(\left(x+y\right)\left(x-2y\right)=0\)

Vì    \(x+y\ne0\)nên   \(x-2y=0\)\(\Leftrightarrow\)\(x=2y\)

Vậy    \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)