Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu có thể vào CHTT hoặc ấn vào dòng chữ xanh để tham khảo
Câu hỏi của Hiền Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Cái này lớp 8 thì phải
Chúc bạn học giỏi
Từ a2 + b2 + c2 = 2 => (a2 + b2 + c2)2 = 4
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 4
=> a4 + b4 + c4 = 4 - 2(a2b2 + b2c2 + c2a2)
Từ a + b + c = 0 => (a + b + c)2 = 0
=> a2 + b2 + c2 + 2(ab + bc + ca) = 0
=> ab + bc + ca = \(\frac{-\left(a^2+b^2+c^2\right)}{2}=\frac{-2}{2}=-1\)
=> (ab + bc + ca)2 = 1
=> a2b2 + b2c2 + c2a2 + 2a2bc + 2ab2c + 2abc2 = 1
=> a2b2 + b2c2 + c2a2 = 1 - 2a2bc + 2ab2c + 2abc2 = 1 - 2abc(a + b + c) = 1 - 0 = 1 (vì a + b + c = 0)
Mà a4 + b4 + c4 = 4 - 2(a2b2 + b2c2 + c2a2)
=> a4 + b4 + c4 = 4 - 2.1 = 2
Ta co (-2a2b3)2 + (3b2c4)5 = 0
4a4b6 + 35b10c20 = 0
Cac don thuc 4a4b6 va 35b10c20 deu ko am
\(\Rightarrow\)\(\left\{{}\begin{matrix}4a^4b^6=0\\\\3^5b^{10}c^{20}=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}ab=0\\\\bc=0\end{matrix}\right.\)
Nếu b = 0 thì a,c tùy ý
a=0, c=0 thì b tùy ý
\(\left(-2a^2b^3\right)+\left(3b^2c^4\right)^5=0\)
\(\Leftrightarrow2^{10}.a^{20}.b^{30}+3^{15}.b^{30}.c^{60}=0\)
Vì hai đơn thức ở vế trái đều không âm mà có tổng bằng \(0\) nên:
\(\Leftrightarrow\left\{\begin{matrix}a^{20}.b^{30}=0\\b^{30}.c^{60}=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}a.b=0\\b.c=0\end{matrix}\right.\)
Vậy:
\(b=0;a\) và \(c\) tùy ý
Hoặc \(a=0;c=0\) và \(b\) tùy ý
Hoặc \(a=b=c=0\)
Ta có: đa thức: \(C\left(x\right)=3x^2+12\)
Mà \(3x^2\ge0\)
Do đó: \(3x^2+12\ge12>0\)
Do đó da thức trên vô nghiệm
Xét đẳng thức a2 + b2 + c2 = 0, ta có :
\(a^2\ge0\)
\(b^2\ge0\) => a2 + b2 + c2 \(\ge0\)
\(c^2\ge0\)
Mà đề cho a2 + b2 + c2 = 0
=> \(\hept{\begin{cases}a^2=0\\b^2=0\\c^2=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}}\)
Đồng thời nó cũng thõa mãn điều kiện a + b + c = 0
Ta có :
a4 + b4 + c4 = 0 + 0 + 0 = 0
đề nghị bn Kurosaki ko làm đc thì đừng giải tầm bậy nhé , người khác học theo cách giải của bn thì hậu quả thế nào,đã bao giờ mở mang đầu óc như vậy chưa ?