K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2015

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

     = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101

     = 99.100.101

A=333300

B= (1.2 + 2.3 + 3.4 + ... + 100.101) - (1 + 2 + 3+ 4 + ... + 100)

  = 333300 + 10100 - 5050

  = 333300 + 5050

  = 338350

30 tháng 8 2016

A =  1*2 + 2*3 + 3*4 + ........+ 99*100

=>3A=1.2.3+2.3.3+3.4.3+...+99.100.3

<=> 3A =1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

<=> 3A =1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

<=> 3A = 99.100.101 = 999900

=> S = 333300

3 tháng 1 2018

A = (13x+5a)+(21b-3b) = 18a+18b = 18.(a+b) = 18.100 = 1800

B = (1+100).100 : 2 = 5050

Tk mk nha

A=13a+21b+5a-3b

A=(13a+5a)+(21b-3b)

A=18a+18b

A=18.(a+b)

tha a+b+100ta được:

A=18.100

A=1800

B=1+2+3+...+99+100

số số hạng của tổng Blà(100-1):1+1=100

vậy B=(100+1).100:2=5050

C=1.2+2.3+3.4+...+99.100

3C=1.2.3+2.3.3+3.4.3+...+99.100.3

3C=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3C=(1.2.3+2.3.4+3.4.5+...+99.100.101)-(0.1.2+1.2.3+2.3.4+...+98.99.100)

3C=99.100.101-0.1.2

3C=999900-0

3C=999900

C=999900:3

C=333300

13 tháng 6 2017

\(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+99\cdot100\cdot\left(101-98\right)\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+99\cdot100\cdot101-98\cdot99\cdot100\)

\(3A=99\cdot100\cdot101\Rightarrow A=\dfrac{99\cdot100\cdot101}{3}=333300\)

\(B=1^2+2^2+3^2+...+99^2+100^2\)

\(=\dfrac{100\cdot\left(100+1\right)\cdot\left(2\cdot100+1\right)}{6}\)

\(=\dfrac{2030100}{6}=338350\)

\(C=1\cdot2\cdot3+2\cdot3\cdot4+...+8\cdot9\cdot10\)

\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+8\cdot9\cdot10\cdot\left(11-7\right)\)

\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+8\cdot9\cdot10\cdot11-7\cdot8\cdot9\cdot10\)

\(4C=8\cdot9\cdot10\cdot11\Rightarrow C=\dfrac{8\cdot9\cdot10\cdot11}{4}=1980\)

13 tháng 6 2017

@Hồng Phúc Nguyễn

21 tháng 7 2017

c, 4C= (1.2.3+2.3.4+3.4.5+...+8.9.10) .4

==> 4C= [1.2.3.(4-0) + 2.3.4-(5-1) + 8.9.10.(11-7)

==>4C= 1.2.3.4 - 1.2.3.4+ 2.3.4.5-2.3.4.5 + 7.8.9.10- 7.8.9.10 + 8.9.10.11

==> 4C= 8.9.10.11=7920

==> C= 7920 :4=1980

a, Ta có: 3A= 1.2.3+2.3.3+3.4.3+...+99.100.3

               3A=1.2.(3-0) + 2.3.(4-1)+ 3.4.(5-2)+ ... + 99.100.( 101-98)

               3A=(1.2.3 + 2.3.4+ 3.4.5+ 99.100.101) - (0.1.2 +1.2.3+ 2.3.4 + ... + 98.99.100)

               3A= 99.100.101 - 0.1.2

               3A= 999900 - 0

               3A= 999900

    ==> A= 999900 : 3

   ==> A= 333300

23 tháng 6 2015

\(A=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)

\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=5\left(1-\frac{1}{100}\right)\)

\(A=5.\frac{99}{100}\)

\(A=\frac{99}{20}\)

 

\(B=\frac{1}{1.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(B=\frac{1}{2}-\frac{1}{10}\)

\(B=\frac{2}{5}\)

 

\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(C=\frac{1}{3}-\frac{1}{15}\)

\(C=\frac{4}{15}\)

23 tháng 6 2015

\(A=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)

\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=5\left(1-\frac{1}{100}\right)\)

\(A=5.\frac{99}{100}\)

\(A=\frac{99}{20}\)

 

\(B=\frac{1}{1.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(B=\frac{1}{2}-\frac{1}{10}\)

\(B=\frac{2}{5}\)

 

\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(C=\frac{1}{3}-\frac{1}{15}\)

\(C=\frac{4}{15}\)

3 tháng 11 2016

C=1.2+2.3+...+99.100

3C=1.2.3+2.3.3+...+99.100.3

3C=1.2(3-0)+2.3(4-1)+...+99.100(101-98)

C=99.100.101 phần 3

C=333 300

3 tháng 11 2016

Mình hông hiểu bài đó

 

11 tháng 4 2017

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.......\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1.2.3.....100}{1.2.3....100}.\frac{1.2.3....100}{2.3.4...101}\)

\(=1.\frac{1}{101}=\frac{1}{101}\)

11 tháng 4 2017

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}\)

\(=\frac{1.2.3...99.100}{2.3.4...100.101}\)

\(=\frac{1}{101}\)

20 tháng 11 2017

a)đặt A = 1.2 + 3.4 + 4.5 +...+ 99.100

A=1.2+2.3+3.4+4.5+...+99.100

=>3A=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3

=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)

=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100

=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6+...+99.100.101 

=99.100.101=999900

=>A=999900:3=333300

Vậy A=333300 

b)D=2 +4 +6 +333 300

D=4+16+36+333 300

D=20+36+333 300 

D=56+333 300

D=333 356 

19 tháng 4 2018

thank

2 tháng 3 2018

tao dóe biet

2 tháng 3 2018

a,1^2/1.2 . 2^2/2.3 . 3^2/3.4 ... 99^2/99.100 . 100^2/100.101

= 1/2 . 2/3 . 3/4 ... 99/100 . 100/101

=( 2.3.4....100/2.3.4...100) . 1/101

= 1 . 1/101

=1/101

ý b tương tự nhé !