Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi độ dài hai cạnh góc vuông là $a$ và $b$ (cm).
Độ dài cạnh huyền: $\sqrt{a^2+b^2}$ (theo định lý Pitago)
Diện tích: $ab:2=150$
$\Rightarrow ab=300$
Chu vi htg: $a+b+\sqrt{a^2+b^2}=60$
$\Leftrightarrow \sqrt{a^2+b^2}=60-(a+b)$
$\Rightarrow a^2+b^2=[60-(a+b)]^2=3600+a^2+b^2+2ab-120(a+b)$
$\Leftrightarrow 3600+2ab-120(a+b)=0$
$\Leftrightarrow 3600+2.300-120(a+b)=0$
$\Leftrightarrow a+b=35$ (cm)
$\Leftrightarrow a=35-b$. Thay vào điều kiện $ab=300$ thì:
$b(35-b)=300$
$\Leftrightarrow 35b-b^2=300$
$\Leftrightarrow b^2-35b+300=0$
$\Leftrightarrow (b-20)(b-15)=0$
$\Leftrightarrow b=20$ hoặc $b=15$
Nếu $b=20$ thì $a=15$. Cạnh huyền $\sqrt{20^2+15^2}=25$ (cm)
Nếu $b=15$ thì $a=20$. Cạnh huyền $\sqrt{20^2+15^2}=25$ (cm)
4) ti lê canh huyen la: 52 + 122 = 132
ta có AB/5 =AC/12 = BC/13 =>AB=20;AC=48;BC=52
5) cac canh bang 20;48 ;52
la tg vuong vi 522 = 482+202.
( giai toan giup bạn )
tớ gợi ý nhé:
gọi hai cạnh góc vuông là a;b, cạnh huyền là c
đặt \(\dfrac{a}{8}\) = \(\dfrac{b}{15}\) vào k
=> a=....; b= .....
sau đó là áp dụng đl pi-ta-go( ghép hết vào với nhau),tính c
Thế là xong
Gọi hai cạnh góc vuông và cạnh huyền của tam giác vuông lần lượt là a(cm), b(cm) và c(cm)(Điều kiện: a>0; b>0; c>0)
Vì các cạnh góc vuông tỉ lệ với 5 và 12 nên a:b=5:12
\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{12}\)
Đặt \(\dfrac{a}{5}=\dfrac{b}{12}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=12k\end{matrix}\right.\)
Áp dụng định lí Pytago, ta được:
\(c^2=a^2+b^2\)
\(\Leftrightarrow c^2=\left(5k\right)^2+\left(12k\right)^2=169k^2\)
hay c=13k
Ta có: Chu vi của tam giác bằng 60cm
nên a+b+c=60
\(\Leftrightarrow5k+12k+13k=60\)
\(\Leftrightarrow30k=60\)
hay k=2
Ta có: a=5k(cmt)
nên a=10(cm)
Ta có: b=12k(cmt)
nên b=24(cm)
Ta có: c=13k(cmt)
nên c=26(cm)
Vậy: Độ dài các cạnh của tam giác vuông cần tìm lần lượt là 10cm; 24cm và 26cm