Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2x+3>=1
=>2x>=-2
hay x>=-1
b: -3x+4<=5
=>-3x<=1
hay x>=-1/3
c: 3x+5<4-2x
=>5x<-1
hay x<-1/5
d: 1/2x+7>-5/2
=>1/2x>-19/2
hay x>-19
a.
Gọi 3 cạnh của tam giác lần lượt là a, b, c.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)
\(\frac{a}{3}=3\Rightarrow a=3\times3=9\)
\(\frac{b}{4}=3\Rightarrow b=3\times4=12\)
\(\frac{c}{5}=3\Rightarrow c=3\times5=15\)
Vậy 3 cạnh của tam giác lần lượt là \(9;12;15\)
b.
Gọi 3 số đó lần lượt là a, b, c.
Áp dụng tính chất của dãy tỉ số băng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{480}{10}=48\)
\(\frac{a}{2}=48\Rightarrow a=48\times2=96\)
\(\frac{b}{3}=48\Rightarrow b=48\times3=144\)
\(\frac{c}{5}=48\Rightarrow c=48\times5=240\)
Vậy 3 số đó lần lượt là \(96;144;240\)
Chúc bạn học tốt
. Chu vi của một tam giác bằng tổng độ dài ba cạnh của tam giác ấy.
. Gọi độ dài cạnh thứ ba của tam giác cân là x(cm); x>0.
Áp dụng bất đẳng thức vào tam giác cân
có: 9-4<x<9+4
5<x<13
=> x=9(cm)
Vậy độ dài cạnh thứ ba là 9cm
Chu vi của tam giác caan là:
9+4+9=22(cm)
Vậy chu vi của tam giác cân là 22cm
hihihihi! Có chỗ nào bạn ko hiểu bạn cứ hỏi mk.
Gọi 3 đường cao của tam giác đó lần lượt là: h;k;t tương ứng với 3 cạnh a;b;c
Theo đề ta có:
\(\frac{h+k}{5}=\frac{k+t}{7}=\frac{t+h}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{h+k}{5}=\frac{k+t}{7}+\frac{t+h}{8}=\frac{2\left(h+k+t\right)}{20}=\frac{h+k+t}{10}\)
Đặt: \(\frac{h+k+t}{10}=x\Rightarrow h+k+t=10x\)(1)
Suy ra: \(\frac{h+k}{5}=x\Rightarrow h+k=5x\left(2\right);\frac{k+t}{7}=x\Rightarrow k+t=7x\left(3\right);\frac{t+h}{8}=x\Rightarrow t+h=8x\left(4\right)\)
Từ (1) và (2) suy ra: 5x+t=10x =>t=5x
Từ (1) và (3) suy ra: 7x+h=10x=> h=3x
Từ (1) và (4) suy ra: 8x+k=10x=>k=2x
Mặc khác: a.h=b.k=c.t = 2SABC =>a.3x=b.2x=c.5x
=>3a=2b=5c
=>\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{2}\Rightarrow\frac{a}{10}=\frac{b}{15};\frac{b}{15}=\frac{c}{6}\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{6}\)
Vậy a:b:c=10:15:6
Gọi 3 cạnh của tam giác là a;b;c tương ứng với 3 đường cao h;k;t
Theo bài cho ta có:\(\frac{h+k}{5}=\frac{k+t}{7}=\frac{t+h}{8}\).Theo tính chất dãy tỉ số bằng nhau
\(\Rightarrow\frac{h+k}{5}=\frac{k+t}{7}=\frac{t+h}{8}=\frac{2\left(h+k+t\right)}{5+7+8}=\frac{h+k+t}{10}=x\)
=>h+k=5x; k+t=7x; t+y=8x và h+k+t=10x
=>t=10x-5x=5x
h=8x-5x=3x; k=5x-3x=2x
Ta có: a.h=b.k=c.t (đều bằng 2 lần diện tích tam giác) =>a.3x=b.2x=c.5z
\(\Rightarrow3a=2b=5c\Rightarrow\frac{3a}{30}=\frac{2b}{30}=\frac{5c}{30}\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{6}\)
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Bài 5:
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Vậy a = b = c
Gọi 3 góc của tam giác tại A ; B ; c lần lượt là a ; b và c
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
ÁP dụng tc of dãy ti số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)
\(\Rightarrow\begin{cases}a=45^0\\b=60^0\\c=75\end{cases}\)
giải: gọi số đo các góc \(\widehat{A},\widehat{B},\widehat{C}\) lần lượt là x,y,z
theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5};x+y+z=180^o\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x+y+z}{3+4+5}=\frac{180}{12}=15\)
vì \(\frac{x}{3}=15\Rightarrow x=15.3=45\Rightarrow x=45\)
\(\frac{y}{4}=15\Rightarrow y=15.4=60\Rightarrow y=60\)
\(\frac{z}{5}=15\Rightarrow z=15.5=75\Rightarrow x=75\)
vậy số đo \(\widehat{A}=45^o,\widehat{B}=60^o,\widehat{C}=75^o\)
nguyên à làm sao bn chụp hình rồi đăng lên đc vậy bn chỉ cho mk với!
Gọi độ dài 3 cạnh của tam giác là x,y,z
Theo đề bài ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\) và \(x+y+z=22\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{2+4+5}=\frac{22}{11}=2\)
=>\(\begin{cases}x=4\\y=8\\z=10\end{cases}\)
Kết luận...............