Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài hình chữ nhật là x thì chiều rộng là 720/x (x > 0) (m)
Theo bài ra ta có: (x + 10)(720/x - 6) = 720
<=> 720 - 6x + 7200/x - 60 = 720
=> 6x^2 - 7200 + 60x = 0
<=> x^2 + 10x - 1200 = 0
<=> x^2 + 40x - 30x - 1200 = 0
<=> x(x + 40) - 30(x + 40) = 0
<=> (x + 40)(x - 30) = 0
<=> x = 30 (Vì x > 0)
Vậy chiều dài là 30 m, chiều rộng là 720/30 = 24 m
Nửa chu vi mảnh đất: \(25-x\) (m)
Gọi chiều rộng mảnh đất là x (m) với 0<x<50
Chiều dài mảnh đất là: \(25-x\) (m)
Chiều dài khi tăng 2 lần: \(2\left(25-x\right)\)
Chiều rộng khi giảm 5m: \(x-5\)
Nửa chu vi mới của mảnh đất là: \(2\left(25-x\right)+x-5=45-x\)
Do chu vi mảnh đất tăng 20m nên ta có pt:
\(2\left(45-x\right)=50+20\)
\(\Rightarrow x=10\left(m\right)\)
Chiều dài mảnh đất là: \(25-10=15\left(m\right)\)
Diện tích: \(15.10=150\left(m^2\right)\)
Gọi chiều dài là a, chiều rộng là b (ĐK: a > b > 0)
=> S = ab (2)
Tăng chiều dài thêm 2m, chiều rộng thêm 3m thì diện tích tăng thêm 100m2
=> (a + 2).(b + 3) = S + 100
=> ab + 3a + 2b + 6 = S + 100 (1)
Nếu giảm cả chiều dài và chiều rộng của mảnh vườn đó đi 2m thì diện tích giảm 68m2
=> (a - 2).(b - 2) = S - 68
=> ab - 2b - 2a + 4 = S - 68 (3)
Từ (1); (2); (3) ta có hệ PT:
\(\left\{{}\begin{matrix}ab=S\\ab+3a+2b=S+94\\ab-2a-2b=S-72\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=94\\5a+4b=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a+4b=188\\5a+4b=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=22\left(m\right)\\b=14\left(m\right)\end{matrix}\right.\)
S = ab = 22.14 = 308 (m2)