K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2015

A= \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{35}+\frac{1}{99}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.6}+...+\frac{2}{9.11}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)

\(2A=1-\frac{1}{11}=\frac{10}{11}\)

\(A=\frac{10}{11}:2=\frac{5}{11}\)

27 tháng 3 2015

\(D=\frac{3^2}{1.4}+\frac{3^2}{4.7}+...+\frac{3^2}{13.16}\)

\(D=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{13.16}\right)\)

\(D=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{16}\right)\)

\(D=3.\left(1-\frac{1}{16}\right)=3.\frac{15}{16}=2\frac{13}{16}\)

25 tháng 3 2018

Bài nhìn vô muốn xỉu rồi ='((

1. a) \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)

\(=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{91.94}+\frac{3}{94.97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{97}\right)=\frac{2}{3}.\frac{96}{97}=\frac{64}{97}\)

b) Bạn tự làm, làm nữa chắc xỉu =((( Khi nào rảnh mình sẽ làm, nếu bạn cần

2 ) 

a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{1005}{2011}:2=\frac{1005}{4022}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{1005}{4022}=\frac{3017}{4020+2}\)

\(\Rightarrow x=4020\)

24 tháng 3 2018

tu ma lam nguoi ta con gap hon min nhieu

27 tháng 7 2017

\(A=\frac{3}{1.4}+\frac{3}{4.7}+..........+\frac{3}{91.94}\)

\(\Leftrightarrow A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{91}-\frac{1}{94}\)

\(\Leftrightarrow A=1-\frac{1}{94}=\frac{93}{94}\)

\(B=\frac{1}{1.3}+\frac{1}{3.5}+......+\frac{1}{97.99}\)

\(\Leftrightarrow2B=\frac{2}{1.3}+\frac{2}{3.5}+.......+\frac{3}{97.99}\)

\(\Leftrightarrow2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{97}-\frac{1}{99}\)

\(\Leftrightarrow2B=1-\frac{1}{99}=\frac{98}{99}\)

\(\Leftrightarrow B=\frac{98}{99}:2=\frac{49}{99}\)

27 tháng 7 2017

Ta có : \(A=\frac{3}{1.4}+\frac{3}{4.7}+.....+\frac{3}{91.94}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{91}-\frac{1}{94}\)

\(=1-\frac{1}{94}\)

\(=\frac{93}{94}\)

Câu 2:

\(D=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)

Câu 3: 

\(E=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{205}-\dfrac{1}{207}\right)\)

\(=2\cdot\left(1-\dfrac{1}{207}\right)=2\cdot\dfrac{206}{207}=\dfrac{412}{207}\)

Câu 5: 

\(G=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{16}{17}=\dfrac{4}{17}\)

mk làm phần a thui nhé

a. A = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6

A = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6

A =  1/2 - 1/6

A= 3/6 - 1/6

A = 1/3

10 tháng 11 2019

\(B=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\)

\(b=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)

\(b=\frac{1}{2}-\frac{1}{14}\)

\(b=\frac{3}{7}\)

\(d=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)

\(d=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)

\(d=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(d=1-\frac{1}{11}\)

\(d=\frac{10}{11}\)

\(e=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)

\(e=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+\frac{1}{17\cdot20}\)

\(e=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{17\cdot20}\right)\)

\(e=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(e=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(e=\frac{1}{3}\cdot\frac{9}{20}=\frac{3}{20}\)

19 tháng 4 2017

Đặt A=1/10+1/40+1/88+1/154+1/238+1/340

A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20

3A=3/2.5+3/5.8+....+3/17.20

3A=1/2-1/5+1/5-1/8+...+1/17-1/20

3A=1/2-1/20

3A=9/20

2)

Giữ nguyên p/s 1/2^2

Ta có:1/3^2<1/2.3

         1/4^2<1/3.4

        ...............

          1/n^2<1/(n-1).n

=>1/3^2+1/4^2+...+1/n^2<1/2.3+1/3.4+...+1/(n-1).n

=>1/3^2+1/4^2+.....+1/n^2<1/2-1/3+1/3-1/4+.........+1/n-1-1/n

=>1/2^2+1/3^2+.....+1/n^2<1/2^2+1/2-1/n

=>1/2^2+1/3^2+....+1/n^2<3/4-1/n<3/4

3)

2B=2/3.5+2/5.7+....+2/47.49+2/49.51

2B=1/3-1/5+1/5-1/7+.....+1/47-1/49+1/49-1/51

2B=1/3-1/51

2B=16/51

B=16/51:2

B=8/51

19 tháng 4 2017

A=1+1/2+1/2^2+...+1/2^2010

2A=2+1+1/2+....+1/2^2009

2A-A=(2+1+1/2+...+1/2^2009)-(1+1/2+1/2^2+....+1/2^2010)

A=2-1/2^2010

DD
18 tháng 5 2021

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(B=1-\frac{1}{101}=\frac{100}{101}\)

DD
18 tháng 5 2021

\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(C=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)

\(C=3\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{27}{20}\)

\(D=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)

\(D=\frac{7}{2}B=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)

26 tháng 3 2016

Nguyễn Huy Thắng giải sai rồi ,thế này mới đúng nè

1,\(\frac{1}{6}+\frac{1}{12}+.........+\frac{1}{72}\)

=\(\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{8.9}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{8}-\frac{1}{9}\)

=\(\frac{1}{2}-\frac{1}{9}\)

=\(\frac{7}{18}\)

2,\(\frac{3}{1.4}+\frac{3}{4.7}+..........+\frac{3}{13.16}\)

=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{13}-\frac{1}{16}\)

=\(1-\frac{1}{16}\)

=\(\frac{15}{16}\)

26 tháng 3 2016

2)đặt B= 3/1.4+3/4.7+3/7.10+3/10.13+3/13.16

\(B=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{16}\right)\)

\(B=3-\frac{15}{16}\)

\(B=\frac{45}{16}\)

10 tháng 7 2016

mình sẽ ủng hộ bạn có câu trả lời đúng nhất nhé