Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn mạch chỉ có cuộn cảm thuần thì i trễ pha \(\frac{\pi}{2}\)so với u.
\(I_0=\frac{U_0}{Z_L}=\frac{U_0}{\omega L}\)
Suy ra \(i=\frac{U_0}{\omega L}\cos\left(\omega t-\frac{\pi}{2}\right)\)
* Ban đầu: \(\varphi_{u/i}=-\dfrac{\pi}{4}-(-\dfrac{\pi}{2})=\dfrac{\pi}{4}(rad)\)
\(\Rightarrow \tan\varphi = \dfrac{-Z_C}{R}=-1\Rightarrow Z_C= R\)
Tổng trở của mạch: \(Z=\sqrt{R^2+Z_C^2}=R\sqrt 2\)
* Khi mắc nối tiếp vào mạch tụ thứ 2 có điện dung bằng điện dung đã cho thì: \(Z_C'=2Z_C=2R\)
Tổng trở: \(Z'=\sqrt{R^2+Z_C'^2}=\sqrt{R^2+(2R)^2}=R\sqrt 5\)
\(\Rightarrow \dfrac{I'}{I}=\dfrac{Z}{Z'}=\dfrac{\sqrt 2}{\sqrt 5}\)
\(\Rightarrow I'=0,63I\)
\(\Rightarrow I_0'=0,63I_0\)
Độ lệch pha giữa u và i: \(\tan\varphi = \dfrac{-Z_C'}{R}=2\)
\(\Rightarrow \varphi{_{u/i}} = -0,352\pi(rad)\Rightarrow \varphi{_{i/u}} = 0,352\pi(rad)\)
\(\Rightarrow \varphi i'=\varphi _u+0,352\pi=-0,5\pi+0,352\pi=-0,147\pi\)(rad)
Vậy biểu thức của dòng điện là:
\(i=0,63I_0\cos(\omega t -0,147\pi) (A)\)
Chọn A.
Do gia tốc a vuông pha với vận tốc v, nên ta có: \((\frac{a}{a_{max}})^2+(\frac{v}{v_{max}})^2 =1\) \(\Rightarrow (\frac{a}{\omega^2 A})^2+(\frac{v}{\omega A})^2=1\) \(\Rightarrow \frac{v^2}{\omega ^2}+\frac{a^2}{\omega ^4} = A^2\)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
Do \(u_L\) vuông pha với \(i\)nên \(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
Khi u cực đại thì \(u=U_0\), thế vào biểu thức trên ta tìm đc i = 0.
\(x'=-\omega A\sin\left(\omega t+\varphi_0\right)\)