Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo:
y′(x0)=\(lim_{x\rightarrow x_0}\)\(\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}\)
=\(lim_{x\rightarrow x_0}\)\(\dfrac{\sqrt{x}-\sqrt{x_0}}{\left(\sqrt{x}-\sqrt{x_0}\right).\left(\sqrt{x}+\sqrt{x_0}\right)}\)
=\(lim_{x\rightarrow x_0}\)\(\dfrac{1}{\sqrt{x}+\sqrt{x_0}}\)
=\(\dfrac{1}{\sqrt{x}+\sqrt{x_0}}\)\(=\dfrac{1}{2\sqrt{x_0}}\)
a) \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - x}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{x\left( {x - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} x = 1\)
Vậy \(f'\left( 1 \right) = 1\)
b) \(f'\left( { - 1} \right) = \mathop {\lim }\limits_{x \to - 1} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \frac{{ - {x^3} - 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \frac{{ - \left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \left( {{x^2} - x + 1} \right) = 3\)
Vậy \(f'\left( { - 1} \right) = 3\)
a)
\(\begin{array}{l}f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{2.\ln x}} - {e^{2.\ln {x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{2.\ln {x_0}}}.\left( {{e^{2\ln x - 2\ln {x_0}}} - 1} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^2\left( {{e^{2.\ln x - 2\ln {x_0}}} - 1} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^2\left( {2\ln x - 2\ln {x_0}} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {\frac{x}{{{x_0}}}} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {1 + \frac{x}{{{x_0}}} - 1} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{x}{{{x_0}}} - 1}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{x - {x_0}}}{{{x_0}}}}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{{x_0}}}\\ = 2x_0^2.\frac{1}{{{x_0}}} = 2x\\ \Rightarrow \left( {{x^2}} \right)' = 2x\end{array}\)
b) Dự đoán đạo hàm của hàm số \(y = {x^n}\) tại điểm x bất kì: \(y' = n.{x^{n - 1}}\)
\(\begin{array}{l}\Delta x = x - {x_0} = x - 1\\\Delta y = f({x_0} + \Delta x) - f({x_0}) = f(x) - f(1)\\\mathop {\lim }\limits_{x \to 1} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{3{x^3} - 1 - (3 - 1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{3{x^3} - 3}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{3(x - 1)({x^2} + x + 1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (3({x^2} + x + 1)) = 9\end{array}\)
Vậy \(f'(1) = 9\)
\(f'\left(3\right)=\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-f\left(3\right)}{x-3}\\ =\lim\limits_{x\rightarrow3}\dfrac{2x-6}{x-3}\\ =2\)
1) \(f\left(x\right)=2x-5\)
\(f'\left(x\right)=2\)
\(\Rightarrow f'\left(4\right)=2\)
2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)
\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)
3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)
\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)
\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)
\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)
\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)
\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)
a) Ta có: \(f'\left( x \right) = \left( {{x^{22}}} \right)' = 22.{x^{21}}\)
b) Đạo hàm của hàm số tại điểm \({x_0} = - 1\) là: \(f'\left( { - 1} \right) = 22.{\left( { - 1} \right)^{21}} = - 22\)
a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)
Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).
b) Ta có:
\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)
a) Giả sử ∆x là số gia của số đối tại x0 = 1. Ta có:
∆y = f(1 + ∆x) - f(1) = (1 + ∆x)2 + (1 + ∆x) - (12+ 1) = 3∆x + (∆x)2;
= 3 + ∆x; = (3 + ∆x) = 3.
Vậy f'(1) = 3.
b) Giả sử ∆x là số gia của số đối tại x0 = 2. Ta có:
∆y = f(2 + ∆x) - f(2) = - = - ;
= - ; = - = - .
Vậy f'(2) = - .
c) Giả sử ∆x là số gia của số đối tại x0 = 0.Ta có:
∆y = f(∆x) - f(0) = - ( -1) = ;
= ; = = -2.
Vậy f'(0) = -2
\(\begin{array}{l}f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^{\frac{1}{2}}} - x_0^{\frac{1}{2}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{\frac{1}{2}.\ln x}} - {e^{\frac{1}{2}.\ln {x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{\frac{1}{2}.\ln {x_0}}}.\left( {{e^{\frac{1}{2}\ln x - \frac{1}{2}\ln {x_0}}} - 1} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^{\frac{1}{2}}\left( {{e^{\frac{1}{2}.\ln x - \frac{1}{2}\ln {x_0}}} - 1} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^{\frac{1}{2}}\left( {\frac{1}{2}\ln x - \frac{1}{2}\ln {x_0}} \right)}}{{x - {x_0}}} = \frac{1}{2}x_0^{\frac{1}{2}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {\frac{x}{{{x_0}}}} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {1 + \frac{x}{{{x_0}}} - 1} \right)}}{{x - {x_0}}}\\ = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{x}{{{x_0}}} - 1}}{{x - {x_0}}} = \frac{1}{2}x_0^{\frac{1}{2}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{x - {x_0}}}{{{x_0}}}}}{{x - {x_0}}} = \frac{1}{2}x_0^{\frac{1}{2}}\mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{{x_0}}} = \frac{1}{2}x_0^{\frac{1}{2}}.\frac{1}{{{x_0}}}\\ \Rightarrow f'\left( 1 \right) = \frac{1}{2}{.1^{\frac{1}{2}}}.1 = \frac{1}{2}\end{array}\)