K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(y'=\left(x\cdot log_2x\right)'=log_2x+x\cdot\dfrac{1}{x\cdot ln2}=log_2x+\dfrac{1}{ln2}\)

b: \(y'=\left(x^3e^x\right)'=\left(x^3\right)'\cdot e^x+x^3\cdot\left(e^x\right)'\)

\(=3x^2\cdot e^x+x^3\cdot e^x\)

a: \(y'=\left(x^2+3x-1\right)'\cdot e^x+\left(x^2+3x-1\right)\cdot\left(e^x\right)'\)

\(=e^x\left(2x+3\right)+\left(x^2+3x-1\right)\cdot e^x\)

\(=e^x\left(x^2+5x+2\right)\)

b: \(y'=\left(x^3\right)'\cdot log_2x+x^3\cdot\left(log_2x\right)'\)

\(=3x^2\cdot log_2x+x^3\cdot\dfrac{1}{x\cdot ln2}\)

12 tháng 5 2016

\(y=\log\left(\frac{1-\sqrt{x}}{2\sqrt{x}}\right)\Rightarrow y'=\frac{\left(\frac{1-\sqrt{x}}{2\sqrt{x}}\right)'}{\frac{1-\sqrt{x}}{x^2}\ln10}=\frac{-\frac{1}{2\sqrt{x}}.2\sqrt{x}-\frac{1}{\sqrt{x}}.\left(1-\sqrt{x}\right)}{\frac{1-\sqrt{x}}{2\sqrt{x}}\ln10}\)

                                 \(=\frac{-1-\frac{1-\sqrt{x}}{\sqrt{x}}}{4x.\frac{1-\sqrt{x}}{2\sqrt{x}}\ln10}=\frac{1}{2x\left(\sqrt{x}-1\right)\ln10}\)

20 tháng 8 2023

a, \(y=\left(2x^3+3\right)^2\)

\(y'=2\left(2x^3+3\right)6x^2\)

\(=12x^2\left(2x^3+3\right)\)

b,\(y=cos3x\)

\(y'=-3sin3x\)

c, \(y=log_2\left(x^2+2\right)\)

\(y'=\dfrac{2x}{\left(x^2+2\right)ln2}\)

17 tháng 8 2023

\(y'=\left(log_2\left(2x-1\right)\right)'=\dfrac{2}{\left(2x-1\right)ln2}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,y'=\left(\dfrac{1}{2x+3}\right)'=-\dfrac{2}{\left(2x+3\right)^2}\\ \Rightarrow y''=\dfrac{2\cdot\left[\left(2x+3\right)^2\right]'}{\left(2x+3\right)^4}=\dfrac{8}{\left(2x+3\right)^3}\\ b,y'=\left(log_3x\right)'=\dfrac{1}{xln3}\\ \Rightarrow y''=-\dfrac{1}{x^2ln3}\\ c,y'=\left(2^x\right)'=2^x\cdot ln2\\ \Rightarrow y''=2^x\cdot\left(ln2\right)^2\)

a: \(y'=\left(sin3x\right)'+\left(sin^2x\right)'=3\cdot cos3x+sin\left(x+pi\right)\)

b: \(y'=\left(log_2\left(2x+1\right)\right)'+\left(3^{-2x+1}\right)'\)

\(=\dfrac{2}{\left(2n+1\right)\cdot ln2}-2\cdot3^{-2x+1}\cdot ln3\)

17 tháng 8 2023

tham khảo:

a)y′=2\(^{3x-x^2}\).ln2.(3−2x)

b) y′\(\dfrac{4}{ln3}\).\(\dfrac{1}{4x+1}\).4=\(\dfrac{4}{\left(4x+1\right)ln3}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(y' = {\left( {{x^2} - x} \right)^\prime }{.2^x} + \left( {{x^2} - x} \right).{\left( {{2^x}} \right)^\prime } = \left( {2{\rm{x}} - 1} \right){.2^x} + \left( {{x^2} - x} \right){.2^x}.\ln 2\).

b) \(y' = {\left( {{x^2}} \right)^\prime }.{\log _3}x + {x^2}.{\left( {{{\log }_3}x} \right)^\prime } = 2{\rm{x}}.{\log _3}x + {x^2}.\frac{1}{{x\ln 3}} = 2{\rm{x}}.{\log _3}x + \frac{x}{{\ln 3}}\).

c) Đặt \(u = 3{\rm{x}} + 1\) thì \(y = {e^u}\). Ta có: \(u{'_x} = {\left( {3{\rm{x}} + 1} \right)^\prime } = 3\) và \(y{'_u} = {\left( {{e^u}} \right)^\prime } = {e^u}\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = {e^u}.3 = 3{{\rm{e}}^{3{\rm{x}} + 1}}\).

Vậy \(y' = 3{{\rm{e}}^{3{\rm{x}} + 1}}\).

12 tháng 5 2016

Áp dụng công thức \(\left(\sqrt[n]{u}\right)'=\frac{u'}{n\sqrt[n]{u^{n-1}}}\) :

\(y'=\frac{1+\frac{1}{2\sqrt{x}}}{3\sqrt[3]{\left(x+\sqrt{x}\right)^2}}=\frac{2\sqrt{x}+1}{6\sqrt{x}\sqrt[3]{\left(x+\sqrt{x}\right)^2}}\)

28 tháng 2 2017

Đạo hàm cũng lằng nhằng thật nhỉ