Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng đẳng thức sau (có thể chứng minh bằng cách nhân tung rút gọn):
\(a^n-1=\left(a-1\right)\left(a^{n-1}+a^{n-2}+...+a^1+1\right)\)
Áp dụng với \(a=x;\text{ }a=\frac{1}{x}...\)
tính tổng các dãy sau :
A = 1 + 2 + 22+…+ 2100
B = 3 – 32 + 33 – … – 3100
Bài giải:
A = 1 + 2 + 22 + …+ 2 100
Nhân a = 2 cho hai vế :
2A = 2 + 22 + 23 + …+ 2101
tính : 2A – A = (2 + 22 + 23 + …+ 2101 ) – (1 +2 + 22+ …+2100)
Vậy A = 2101 – 1
B = 3 – 32 + 33 – … – 3100
Nhân a = 3 cho hai vế : 3B = 32 – 33 + 34 – … – 3101
Tín : B + 3B = (3 – 33 + 33) – …- 3100) + ( 32 – 23 +34 – … – 3101)
4B = 3 – 3101
Vậy B = ( 3- 3101) : 4
\(3^{2^{2003}}=3^{\overline{...6}}=\overline{...9}\)
Vậy \(3^{2^{2003}}\)có tận cùng là 9
Đây không phải là bài lớp 9
Chữ số tận cùng là 7