K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)

 

13 tháng 12 2019

Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn

 \(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\)\(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ;  \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)

\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)

\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)

21 tháng 5 2019

( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0

vậy ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\ge\) 0

mà ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\le\)0

suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0

do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Lời giải:
a)

Ta có: \(2^x-2^y=256=2^8\) (\(\Rightarrow x>y\) )

\(\Leftrightarrow 2^y(2^{x-y}-1)=2^8(*)\)

\(x>y\Rightarrow x-y>0\Rightarrow 2^{x-y}\) chẵn. Do đó \(2^{x-y}-1\) lẻ. Kết hợp với

\((*)\Rightarrow 2^{x-y}-1=1\Leftrightarrow x-y=1\)

Khi đó: \(2^8=2^y(2^{x-y}-1)=2^y(2-1)=2^y\Rightarrow y=8\)

\(\Rightarrow x=y+1=9\)

PT có nghiệm \((x,y)=(9,8)\)

b) Giả sử \(x=y\Rightarrow 3^x+3^y= 2.3^x=3\vdots 2\) (vô lý). Do đó \(x\neq y\)

Không mất tính tổng quát giả sử \(x> y\).

PT tương đương: \(3^y(3^{x-y}+1)=3\) \((**)\)

\(x>y\Rightarrow x-y\geq 1\Rightarrow 3^{x-y}\vdots 3\)

\(\Rightarrow 3^{x-y}+1\not\vdots 3\). Kết hợp với \((**)\Rightarrow 3^{x-y}+1=1\Leftrightarrow 3^{x-y}=0\) (vl)

Do đó PT vô nghiệm.

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Câu c)

\((x-2)^2=3\Leftrightarrow \) \(\left[{}\begin{matrix}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow \)\(\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)

Câu d)

Nếu \(y=0\Rightarrow 2007^x=2000-2008^0=1999\Rightarrow x\not\in\mathbb{N}\)

Nếu \(y\geq 1.\)Ta thấy với mọi số tự nhiên \(x\in\mathbb{N}\Rightarrow 2007^x\) lẻ và \(2008^y\) chẵn

\(\Rightarrow 2007^x+2008^y\) lẻ. Mà 2000 là số chẵn, do đó pt vô nghiệm.

8 tháng 3 2018

a. Thay x = -1 vào biểu thức ta được:

\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)

\(=1-1+1-1+...+1-1\)

\(=0\)

b. Thay x = -1 vào biểu thức ta được:

\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)

\(=1-1+1-1+...+1-1\)

\(=0\)

8 tháng 3 2018

d.

Thay x = 1 và y= -1 vào biểu thức ta được:

\(1^{10}.\left(-1\right)^{10}+1^9.\left(-1\right)^9+1^8.\left(-1\right)^8+...+1.\left(-1\right)\)

\(=1-1+1-1+...+1-1\)

\(=0\)

13 tháng 5 2020

câu c mình ko hỉu mấy bạn ơi

13 tháng 5 2020

Câu c bạn chỉ thay x + y = 0 vào M thoy mờ

Câu a mình lm sai :))