Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi đường chéo AC = 2 3 , đường chéo BD = 2 thì để ý rằng AC và BD vuông góc, ta có
Nên ∠ (DAC) = 30 ° từ đó góc A của hình thoi là 60 ° . Suy ra ∠ C = 60 ° còn ∠ B = ∠ D = 120 °
\(x^2-2mx+m-1=0\)
\(\Delta=b^2-4ac=4m^2-4\left(m-1\right)=4m^2-4m+4\)
\(=4\left(m^2-m+1\right)>0\)
\(=>m^2-m+1>0\)
\(=>m^2-2\times\frac{1}{2}m+\frac{1}{4}+\frac{3}{4}>0\)
\(=>\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Theo Vi-et ta có :\(\hept{\begin{cases}x_1x_2=m-1\\x_1+x_2=2m\end{cases}}\)
Ta có \(x_1^2+x_2^2=14\)
\(\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(4m^2-2\left(m-1\right)=14\)
\(4m^2-2m+2-14=0\)
\(4m^2-2m-12=0\)
\(\orbr{\begin{cases}m=2\\m=\frac{-3}{2}\end{cases}}\)
hệ thức lượng \(AB^2=AH\cdot AC\)
TÌM ĐƯỢC AC=15cm
suy ra HC=AC-AH=15-3=12cm
1. Bài 1 e bấm máy
Nhấn Shift + log sẽ xuất hiện tổng sigma
e nhập như sau:
x = 1
cái ô trống ở trên nhập 2007
còn cái biểu thức trong dấu ngoặc đơn là \(\left(\frac{1}{\left(X+1\right)\sqrt{X}+X\sqrt{X+1}}\right)\)
Rồi bấm "="
Chờ máy hiện kq sẽ hơi lâu :)
kq: 0.9776839079
2.
-B1: Tìm số dư của \(2^{2009}\) cho 11 đc kq là 6
- B2: Tìm số dư của \(3^6\) cho 11 đc kq là 3
Vậy \(3^{2^{2009}}\) chia 11 dư 3
3. Gọi độ dài đường chéo ngắn hơn là x, thì độ dài đường chéo kia là 3/2 x
Cạnh hình thoi: 37 : 4 = 9.25 (cm)
Theo định lý Pytago
\(x^2+\left(\frac{3}{2}x\right)^2=9.25^2\)
Vào Shift Solve giải ra tìm đc \(x\approx5.130976815\)
Vậy \(S=\frac{1}{2}x.\frac{3}{2}x=\frac{4107}{208}\approx19.7451923076\left(cm^2\right)\)