Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(15x^2y^3-12x^2y^3\right)+\left(7x^2-12x^2\right)+\left(-8x^3y^2+11x^3y^2\right)\)
\(=3x^2y^3-5x^2+3x^3y^2\)
bậc là 5
b: \(=\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)
\(=\dfrac{5}{2}x^5y+\dfrac{7}{3}xy^4-\dfrac{1}{4}x^2y^3\)
Bậc là 6
c: \(=5xy-2xy+4xy-y^2+3x-2y\)
\(=-y^2+3x-2y+7xy\)
Bậc là 2
Ko ghi đề nha!
*+ \(=\left[2.\left(\dfrac{-1}{2}\right)\right]\left(a^3b.a^2b\right)\)
\(=-a^5b^2\) Bậc là 5+2=7
+ \(=\left(2^3.\dfrac{1}{2}\right)\left(xyz.x^2yx^3\right)\)
\(=4x^3y^2z^4\) Bậc là 3+2+4=9
* a) \(=\left(-7.\dfrac{3}{7}\right)\left(x^2yz.xy^2z^3\right)\)
\(=-3x^3y^3z^4\) Bậc là 3+3+4=10
b) \(=\left[\dfrac{1}{4}.\dfrac{2}{3}.\left(\dfrac{-4}{5}\right)\right]\left(xy^2x^2y^2yz^3\right)\)
\(=\dfrac{-2}{15}x^3y^5z^3\) Bậc là 3+5+3=11
Chào người bạn cũ
a: \(=\left(\dfrac{-1}{3}:\dfrac{-2}{3}\right)^3+\left(\dfrac{4}{21}\cdot\dfrac{21}{4}\right)^{50}+0.01\)
\(=\left(\dfrac{1}{2}\right)^3+1^{50}+0.01=0.125+1+0.01=1.135\)
b: \(=x:y+\left(\dfrac{2x}{y}\right)^2-11x+12x-12y\)
\(=\dfrac{x}{y}+\dfrac{4x^2}{y^2}+x-12y\)
\(=\dfrac{x^2+4x^2+xy^2-12y^3}{y^2}=\dfrac{5x^2+xy^2-12y^3}{y^2}\)
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
A= 15x\(^3\)y\(^2\).\((\dfrac{-2}{3}xy^2)\)
= -10x\(^4\)y\(^4\)
bậc đơn thức A là 4
B=2x\(^5\)y\(^2\).\(3^2x^3y^3\)
=18\(x^8y^5\)
bậc của đơn thức B là 8
C=5xy\(^2\).\(\dfrac{4}{15}xy^3z\)
= \(\dfrac{4}{3}x^2y^5z\)
Bậc của đơn thức C là 5
a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)
=>4^x=4^8
=>x=8
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)
=>2^x=2^11
=>x=11
c: =>1/6*6^x+6^x*36=6^15(1+6^3)
=>6^x=6*6^15
=>x=16
d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)
=>x=9
a: \(=-10bx^3y^2\)
b: \(\dfrac{-4}{5}ab^2c\cdot\left(-20\right)a^4bx=16a^5b^3c\cdot x\)
c: \(=8\cdot\dfrac{1}{4}\cdot a^3\cdot b^2c^4=2a^3b^2c^4\)
d: \(=2ab\cdot\dfrac{4}{3}a^2\cdot b^4\cdot7abc=\dfrac{56}{3}a^4b^6c\)