K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

a) \(\left(x-3y^2\right)^3=-27y^3+27xy^2-9x^2y+x^3\)

b) \(\left(\frac{x}{2}-y\right)^3=\frac{-8y^3+12xy^2-6x^2y-x^3}{8}\)

c) \(\left(\frac{x}{2}+\frac{x}{3}\right)^3=\frac{\left(5x\right)^3}{6^3}=\left(\frac{5x}{6}\right)^3\)

d) \(\left(\frac{2x}{3}-2y\right)^3=\frac{-216y^3+216xy^2-72x^2y+8x^3}{27}\)

Đề bài là gì sao không ghi rõ?? 

2 tháng 11 2024

BÀi 2:

Đặt x = 11...1(n chữ số 1), khi đó

a = x

b = 100..05(n-1 chữ số 0) = 100...00(n chữ số 0) + 5

b = 99...9(n chữ số 9) + 1 + 5 = 9x +6

=> \(ab+1=x\left(9x+6\right)+1\)

=> \(ab+1=9x^2+6x+1=\left(3x+1\right)^2\)

Vậy ab + 1 là 1 số chính phương

17 tháng 8 2021

đề bài là rút gọn à

a) Ta có: \(4x^2-6x\)

\(=2x\left(2x-3\right)\)

b) Ta có: \(9x^4y^3+3x^2y^4\)

\(=3x^2y^3\left(3x^2+y\right)\)

c) Ta có: 3(x-y)-5x(y-x)

=3(x-y)+5x(x-y)

=(x-y)(3+5x)

d) Ta có: \(x^3-2x^2+5x\)

\(=x\left(x^2-2x+5\right)\)

e) Ta có: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=\left(x+3y\right)\left(5-15x\right)\)

\(=5\left(x+3y\right)\cdot\left(1-3x\right)\)

f) Ta có: \(2x^2\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(2x^2+4\right)\)

\(=2\left(x+1\right)\left(x^2+2\right)\)

a) Ta có: \(4\left(2-x\right)^2+xy-2y\)

\(=4\left(x-2\right)^2+y\left(x-2\right)\)

\(=\left(x-2\right)\left[4\left(x-2\right)+y\right]\)

\(=\left(x-2\right)\left(4x-8+y\right)\)

b) Ta có: \(3a^2x-3a^2y+abx-aby\)

\(=3a^2\left(x-y\right)+ab\left(x-y\right)\)

\(=\left(x-y\right)\left(3a^2+ab\right)\)

\(=a\left(x-y\right)\left(3a+b\right)\)

c) Ta có: \(x\left(x-y\right)^3-y\left(y-x\right)^2-y^2\left(x-y\right)\)

\(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]\)

\(=\left(x-y\right)\left[x\left(x^2-2xy+y^2\right)-yx+y^2-y^2\right]\)

\(=\left(x-y\right)\left(x^3-2x^2y+xy^2-xy\right)\)

d) Ta có: \(2ax^3+6ax^2+6ax+18a\)

\(=2ax^2\left(x+3\right)+6a\left(x+3\right)\)

\(=\left(x+3\right)\left(2ax^3+6a\right)\)

\(=2a\left(x+3\right)\left(x^3+3\right)\)

e) Ta có: \(x^2y-xy^2-3x+3y\)

\(=xy\left(x-y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-3\right)\)

25 tháng 9 2020

a) A=x^3 + 3x^2*5 + 3x*5^2 + 5^3

       =(x+5)^3

Thay x = -10 vào biểu thức A ta được:

A  = (-10+5)^3

    =(-5)^3

    =-75

Làm tương tự nhé

a) Ta có: \(\left(3-xy^2\right)^2-\left(2+xy^2\right)^2\)

\(=\left[\left(3-xy^2\right)-\left(2+xy^2\right)\right]\cdot\left[\left(3-xy^2\right)+\left(2+xy^2\right)\right]\)

\(=\left(3-xy^2-2-xy^2\right)\cdot\left(3-xy^2+2+xy^2\right)\)

\(=5\cdot\left(1-2xy^2\right)\)

\(=5-10xy^2\)

b) Ta có: \(9x^2-\left(3x-4\right)^2\)

\(=\left[3x-\left(3x-4\right)\right]\left[3x+\left(3x-4\right)\right]\)

\(=\left(3x-3x+4\right)\cdot\left(3x+3x-4\right)\)

\(=4\cdot\left(6x-4\right)\)

\(=24x-16\)

c) Ta có: \(\left(a-b^2\right)\left(a+b^2\right)\)

\(=a^2-b^4\)

d) Ta có: \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

\(=a^4+4a^3+4a^2-9\)

e) Ta có: \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=x^2+xy-6x-yx-y^2+6y+6x+6y-36\)

\(=x^2-y^2+12y-36\)

f) Ta có: \(\left(y+2z-3\right)\left(y-2z-3\right)\)

\(=\left(y-3\right)^2-\left(2z\right)^2\)

\(=y^2-6y+9-4z^2\)

g) Ta có: \(\left(2y-5\right)\left(4y^2+10y+25\right)\)

\(=\left(2y\right)^3-5^3\)

\(=8y^3-125\)

h) Ta có: \(\left(3y+4\right)\left(9y^2-12y+16\right)\)

\(=\left(3y\right)^3+4^3\)

\(=27y^3+64\)

i) Ta có: \(\left(x-3\right)^3+\left(2-x\right)^3\)

\(=\left(x-3\right)^3-\left(x-2\right)^3\)

\(=x^3-9x^2+27x-27-\left(x^3-6x^2+12x-8\right)\)

\(=x^3-9x^2+27x-27-x^3+6x^2-12x+8\)

\(=-3x^2+15x-19\)

j) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

\(=6x^2y+2y^3\)