Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)
\(=2\times\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=1-\dfrac{1}{11}\)
\(=\dfrac{11}{11}-\dfrac{1}{11}\)
\(=\dfrac{10}{11}\)
\((\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11})\cdot y=\frac{2}{3}\)
\(\Rightarrow(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11})\cdot y=\frac{2}{3}\)
\(\Rightarrow1-\frac{1}{11}\cdot y=\frac{2}{3}\)
\(\Rightarrow\frac{10}{11}\cdot y=\frac{2}{3}\)
\(\Rightarrow y=\frac{2}{3}:\frac{10}{11}=\frac{11}{15}\)
Vậy :\(y=\frac{11}{15}\)
Bạn có muốn mình thử lại không?
Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$
$=1-\frac{1}{21}=\frac{20}{21}$
$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$
a ) A = 20,15 x 25,75 + 74,25 x 20,15
A = 20,15 x ( 25,75 + 74,25 )
A = 20,15 x 100
A = 2015
Tính bằng cách thuận tiện nhất
a) A = 20,15 x 25,75 + 74,25 x 20,15
= 20,15 x (25,75 + 74,25)
= 20,15 x 100
= 2015
\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right).y=\frac{2}{3}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
\(\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}.\frac{11}{10}\)
\(y=\frac{22}{30}\)
1/1 x 3 + 1/3 x 5 + 1/5 x 7 + 1/7 x 9 + 1/9 x 11
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11
= 1 - 1/11
= 10/11
\(\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{9.11}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{1}{3.5}+....+\frac{2}{9.11}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{11}\right)=\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
\(=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{9.11}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{11}\right)\)
\(=2.\left(1-\frac{1}{11}\right)\)
\(=2.\left(\frac{11}{11}-\frac{1}{11}\right)\)
\(=2.\frac{10}{11}\)
\(=\frac{20}{11}\)