K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2016

Đề bài đúng k z?@@

Hình như là \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2016\)thì phải?leuleu

25 tháng 9 2016

đề bài đúng mà bạn hihi

18 tháng 11 2017

a) \(1,25\times26,34+6,09\times1,25\)

\(=1,25\times\left(26,34+6,09\right)\)

\(=1,25\times32,43\)

\(=40,5375\)

b) \(15,2\times0,75+15,2\times0,5+4,8\times0,85\)

\(=\left(15,2\times0,75+15,2\times0,5\right)+4,8\times0,85\)

\(=15,2\left(0,75+0,5\right)+4,8\times0,85\)

\(=15,2\times1,25+4,8\times0,85\)

\(=19+4,08\)

\(=23,08\)

25 tháng 4 2023

C.120

29 tháng 10 2016

x=1

k=0

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)

Ta có: \(\left\{ \begin{array}{l}\sin {45^o} = \cos {45^o} = \frac{{\sqrt 2 }}{2};\;\\\sin {30^o} = \frac{1}{2}\end{array} \right.\)

Thay vào M, ta được: \(M = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = \frac{2}{4} + \frac{1}{2} = 1\)

b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)

Ta có: \(\sin {60^o} = \frac{{\sqrt 3 }}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\sin {45^o} = \frac{{\sqrt 2 }}{2};\, \cos {45^o}= \frac{{\sqrt 2 }}{2}\)

Thay vào N, ta được: \(N = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{1}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{3}{4} + \frac{1}{4} = 1\)

c) \(P = 1 + {\tan ^2}{60^o}\)

Ta có: \(\tan {60^o} = \sqrt 3 \)

Thay vào P, ta được: \(Q = 1 + {\left( {\sqrt 3 } \right)^2} = 4.\)

d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)

Ta có: \(\sin {120^o} = \frac{{\sqrt 3 }}{2};\;\;\cot {120^o} = \frac{{ - 1}}{{\sqrt 3 }}\)

Thay vào P, ta được: \(Q = \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} - \;{\left( {\frac{{ - 1}}{{\sqrt 3 }}} \right)^2} = \frac{1}{{\frac{3}{4}}} - \;\frac{1}{3} = \;\frac{4}{3} - \;\frac{1}{3} = 1.\)

6 tháng 3 2022

(36 + 54) × 7 + 7 × 9 + 7

= 90 × 7 + 7 × 9 + 7

= (90 + 9 + 1 ) × 7

= 100 × 7

= 700

A = 700

NV
24 tháng 4 2019

Có vẻ bạn chép sai đề, do đề bài cho biết tam giác có 1 góc có số đo cố định ko phụ thuộc \(x\) nên ta cho x một giá trị bất kì rồi sử dụng định lý hàm cos để tính 3 góc, giả sử cho \(x=2\Rightarrow\left\{{}\begin{matrix}a=7\\b=5\\c=5\end{matrix}\right.\)

Tam giác này cân tại A nên chỉ cần tính góc A và B

\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{1}{50}\)

\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{7}{10}\)

Không có đáp án nào cả