Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện: \(x\ne-5\)
- Với x<-5 thì: x+3 <0; x+5<0 nên: \(\frac{x+3}{x+5}>0\)Loại.
- Với x>=-3 thì x+3>=0; x+5 >0 nên \(\frac{x+3}{x+5}\ge0\)Loại.
- Với -5<x<-3 thì x+3 <0; x+5>0 nên: \(\frac{x+3}{x+5}< 0\)TM đề bài.
Nghiệm của BPT là -5 <x <-3.
b) Tương tự, nghiệm của BPT là: \(\orbr{\begin{cases}x< -1\\x>3\end{cases}}\)
Mà em mới lớp 7 à nên k biết nghiệm là gì hết á, chị có cách nào khác k ạ???
b/ \(\left|\left|3x-1+9\right|\right|=-\left(-31\right)\)
<=> \(\left|\left|3x+8\right|\right|=31\)
<=> \(\left|3x+8\right|=31\)
<=> \(\orbr{\begin{cases}3x+8=-31\\3x+8=31\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=-39\\3x=23\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-13\\x=\frac{23}{3}\end{cases}}\)
A= 1*2+2*3+3*4+..........+n*(n+1)
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n+1) . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + n.(n+1).(n+2-n+1)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + n.(n+1)(n+2) - (n-1)n(n+1)
3A = n(n+1)(n+2)
A = n(n+1)(n+2)/3
Bài làm:
Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)
=> \(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\right)\)
<=> \(2B=1-\frac{1}{3^{2017}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{2017}.2}< \frac{1}{2}\)
=> \(B< \frac{1}{2}\)