Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{8^{12}.5^{21}}{2^{17}.10^{19}}=\frac{\left(2^3\right)^{12}.5^{21}}{2^{17}.2^{19}.5^{19}}=\frac{2^{36}.5^{21}}{2^{36}.5^{19}}=25\)
\(b,\left(x-5\right).\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow x-5=0\)hoặc \(x+\frac{1}{2}=0\)
\(x=5\)hoặc \(x=-\frac{1}{2}\)
\(c,\left|x-6\right|-\frac{1}{2}=\frac{3}{2}\)
\(\left|x-6\right|=2\)
\(\Rightarrow x-6=2\)hoặc \(x-6=-2\)
\(x=8\)hoặc \(x=4\)
a) \(\frac{4}{3}-\frac{2}{5}\)
\(=\frac{20}{15}-\frac{6}{15}=\frac{14}{15}\)
b) \(\left|-\frac{1}{10}\right|-\left(-\frac{1}{3}\right)^2\div\frac{5}{9}\)
\(=\frac{1}{10}-\frac{1}{9}\cdot\frac{9}{5}\)
\(=\frac{1}{10}-\frac{1}{5}=\frac{1}{10}-\frac{2}{10}\)
\(=-\frac{1}{10}\)
c) Đề bài có vấn đề!!!
d) \(\left(-0,2\right)^2\cdot5-8^2\cdot\frac{9^4}{3^7}\cdot4^3\)
\(=0,04\cdot5-64\cdot\frac{\left(3^2\right)^4}{3^7}\cdot64\)
\(=0,2-4096\cdot\frac{3^8}{3^7}=0,2-4096\cdot3\)
\(=0,2-12288=-128878\)
3.
a) \(\left(x-1\right)^3=125\)
=> \(\left(x-1\right)^3=5^3\)
=> \(x-1=5\)
=> \(x=5+1\)
=> \(x=6\)
Vậy \(x=6.\)
b) \(2^{x+2}-2^x=96\)
=> \(2^x.\left(2^2-1\right)=96\)
=> \(2^x.3=96\)
=> \(2^x=96:3\)
=> \(2^x=32\)
=> \(2^x=2^5\)
=> \(x=5\)
Vậy \(x=5.\)
c) \(\left(2x+1\right)^3=343\)
=> \(\left(2x+1\right)^3=7^3\)
=> \(2x+1=7\)
=> \(2x=7-1\)
=> \(2x=6\)
=> \(x=6:2\)
=> \(x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
a) Ta có: \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
Mà \(\frac{1}{32}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\Rightarrow m=5\)
b)Ta có: \(\frac{343}{125}=\left(\frac{7}{5}\right)^3\)
Mà \(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\Rightarrow n=3\)
\(a)\) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Leftrightarrow\)\(\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(\Leftrightarrow\)\(\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
\(\Leftrightarrow\)\(m=5\)
Vậy \(m=5\)
\(b)\) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow\)\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow\)\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow\)\(n=3\)
Vậy \(n=3\)
Chúc bạn học tốt ~
B=1+1/5+1/52+...+1/52018
=>5B=5+1+1/5+...+1/52017
=>5B-B=5-1/52018
=>4B=5-1/52018
=>B=(5-1/52018)/4
\(B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\)
\(\Rightarrow5B=5\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\right)\)
\(\Rightarrow5B=5+1+\frac{1}{5}+...+\frac{1}{5^{2017}}\)
\(\Rightarrow5B-B=\left(5+1+\frac{1}{5}+...+\frac{1}{5^{2017}}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\right)\)
\(\Rightarrow4B=5-\frac{1}{5^{2018}}\)
\(\Rightarrow B=\frac{5-\frac{1}{5^{2018}}}{4}\)
Vậy \(B=\frac{5-\frac{1}{5^{2018}}}{4}\)